Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2 * weight + 837
This means that on average for every extra kilogram weight a rider loses -2 positions in the result.
Chanteur
2
62 kgThijs
3
69 kgD'Hollander
4
74 kgPeers
6
73 kgPospyeyev
7
71 kgVandenbroucke
990
67 kgSunderland
990
65 kgMattan
990
69 kgBäckstedt
990
94 kgKlöden
990
63 kgRué
990
74 kgVan de Wouwer
990
66 kgGougot
990
72 kgDemarbaix
990
64 kgBeuchat
990
62 kgSteels
990
73 kgDe Waele
990
62 kg
2
62 kgThijs
3
69 kgD'Hollander
4
74 kgPeers
6
73 kgPospyeyev
7
71 kgVandenbroucke
990
67 kgSunderland
990
65 kgMattan
990
69 kgBäckstedt
990
94 kgKlöden
990
63 kgRué
990
74 kgVan de Wouwer
990
66 kgGougot
990
72 kgDemarbaix
990
64 kgBeuchat
990
62 kgSteels
990
73 kgDe Waele
990
62 kg
Weight (KG) →
Result →
94
62
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | CHANTEUR Pascal | 62 |
3 | THIJS Erwin | 69 |
4 | D'HOLLANDER Glenn | 74 |
6 | PEERS Chris | 73 |
7 | POSPYEYEV Kyrylo | 71 |
990 | VANDENBROUCKE Frank | 67 |
990 | SUNDERLAND Scott | 65 |
990 | MATTAN Nico | 69 |
990 | BÄCKSTEDT Magnus | 94 |
990 | KLÖDEN Andreas | 63 |
990 | RUÉ Gérard | 74 |
990 | VAN DE WOUWER Kurt | 66 |
990 | GOUGOT Fabrice | 72 |
990 | DEMARBAIX Sébastien | 64 |
990 | BEUCHAT Roger | 62 |
990 | STEELS Tom | 73 |
990 | DE WAELE Fabien | 62 |