Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Verbrugghe
1
70 kgBomans
2
74 kgThijs
3
69 kgStreel
4
69 kgMarichal
6
72 kgPronk
7
73 kgBarthe
8
65 kgWauters
11
73 kgFarazijn
12
69 kgDetilloux
15
62 kgBelohvoščiks
19
70 kgVan Hyfte
20
70 kgVan de Wouwer
23
66 kgD'Hollander
24
74 kgMattan
25
69 kgAerts
26
68 kgvan Dijk
28
74 kgBecke
46
75 kgVerheyen
47
68 kg
1
70 kgBomans
2
74 kgThijs
3
69 kgStreel
4
69 kgMarichal
6
72 kgPronk
7
73 kgBarthe
8
65 kgWauters
11
73 kgFarazijn
12
69 kgDetilloux
15
62 kgBelohvoščiks
19
70 kgVan Hyfte
20
70 kgVan de Wouwer
23
66 kgD'Hollander
24
74 kgMattan
25
69 kgAerts
26
68 kgvan Dijk
28
74 kgBecke
46
75 kgVerheyen
47
68 kg
Weight (KG) →
Result →
75
62
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | VERBRUGGHE Rik | 70 |
2 | BOMANS Carlo | 74 |
3 | THIJS Erwin | 69 |
4 | STREEL Marc | 69 |
6 | MARICHAL Thierry | 72 |
7 | PRONK Matthé | 73 |
8 | BARTHE Stéphane | 65 |
11 | WAUTERS Marc | 73 |
12 | FARAZIJN Peter | 69 |
15 | DETILLOUX Christophe | 62 |
19 | BELOHVOŠČIKS Raivis | 70 |
20 | VAN HYFTE Paul | 70 |
23 | VAN DE WOUWER Kurt | 66 |
24 | D'HOLLANDER Glenn | 74 |
25 | MATTAN Nico | 69 |
26 | AERTS Mario | 68 |
28 | VAN DIJK Stefan | 74 |
46 | BECKE Daniel | 75 |
47 | VERHEYEN Geert | 68 |