Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 105
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
D'Hollander
1
74 kgMattan
2
69 kgMarichal
3
72 kgVan Hyfte
5
70 kgThijs
6
69 kgVerbrugghe
8
70 kgBelohvoščiks
9
70 kgWauters
11
73 kgVan de Wouwer
12
66 kgAerts
13
68 kgVerheyen
18
68 kgStam
20
64 kgLefevre
23
66 kgPronk
24
73 kgSteels
26
73 kgvan Dijk
42
74 kgBecke
43
75 kgDe Neef
47
75 kg
1
74 kgMattan
2
69 kgMarichal
3
72 kgVan Hyfte
5
70 kgThijs
6
69 kgVerbrugghe
8
70 kgBelohvoščiks
9
70 kgWauters
11
73 kgVan de Wouwer
12
66 kgAerts
13
68 kgVerheyen
18
68 kgStam
20
64 kgLefevre
23
66 kgPronk
24
73 kgSteels
26
73 kgvan Dijk
42
74 kgBecke
43
75 kgDe Neef
47
75 kg
Weight (KG) →
Result →
75
64
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | D'HOLLANDER Glenn | 74 |
2 | MATTAN Nico | 69 |
3 | MARICHAL Thierry | 72 |
5 | VAN HYFTE Paul | 70 |
6 | THIJS Erwin | 69 |
8 | VERBRUGGHE Rik | 70 |
9 | BELOHVOŠČIKS Raivis | 70 |
11 | WAUTERS Marc | 73 |
12 | VAN DE WOUWER Kurt | 66 |
13 | AERTS Mario | 68 |
18 | VERHEYEN Geert | 68 |
20 | STAM Danny | 64 |
23 | LEFEVRE David | 66 |
24 | PRONK Matthé | 73 |
26 | STEELS Tom | 73 |
42 | VAN DIJK Stefan | 74 |
43 | BECKE Daniel | 75 |
47 | DE NEEF Steven | 75 |