Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Vandenbroucke
2
67 kgDierckxsens
3
71 kgRebellin
4
63 kgPlanckaert
5
70 kgStreel
7
69 kgMoncoutié
9
69 kgVinokourov
10
68 kgMarichal
11
72 kgDemarbaix
12
64 kgPiziks
13
70 kgPronk
17
73 kgCretskens
21
75 kgPlaza
22
68 kgEngels
24
64 kgVan den Abeele
26
71 kgBasso
30
70 kg
2
67 kgDierckxsens
3
71 kgRebellin
4
63 kgPlanckaert
5
70 kgStreel
7
69 kgMoncoutié
9
69 kgVinokourov
10
68 kgMarichal
11
72 kgDemarbaix
12
64 kgPiziks
13
70 kgPronk
17
73 kgCretskens
21
75 kgPlaza
22
68 kgEngels
24
64 kgVan den Abeele
26
71 kgBasso
30
70 kg
Weight (KG) →
Result →
75
63
2
30
# | Rider | Weight (KG) |
---|---|---|
2 | VANDENBROUCKE Frank | 67 |
3 | DIERCKXSENS Ludo | 71 |
4 | REBELLIN Davide | 63 |
5 | PLANCKAERT Jo | 70 |
7 | STREEL Marc | 69 |
9 | MONCOUTIÉ David | 69 |
10 | VINOKOUROV Alexandre | 68 |
11 | MARICHAL Thierry | 72 |
12 | DEMARBAIX Sébastien | 64 |
13 | PIZIKS Arvis | 70 |
17 | PRONK Matthé | 73 |
21 | CRETSKENS Wilfried | 75 |
22 | PLAZA David | 68 |
24 | ENGELS Addy | 64 |
26 | VAN DEN ABEELE Peter | 71 |
30 | BASSO Ivan | 70 |