Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 63
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Streel
2
69 kgTchmil
3
75 kgFinot
5
65 kgJalabert
6
68 kgAus
7
75 kgMcGee
8
72 kgBergès
10
68 kgFofonov
13
65 kgVerbrugghe
15
69 kgMuseeuw
16
71 kgDe Wolf
18
67 kgAgnolutto
19
69 kgSciandri
20
75 kgMizurov
21
68 kgCretskens
22
75 kgDemarbaix
23
64 kgBrandt
24
66 kgFritsch
25
65 kgDelrieu
27
69 kgNocentini
28
60 kgSijmens
29
69 kgVan Hyfte
30
70 kg
2
69 kgTchmil
3
75 kgFinot
5
65 kgJalabert
6
68 kgAus
7
75 kgMcGee
8
72 kgBergès
10
68 kgFofonov
13
65 kgVerbrugghe
15
69 kgMuseeuw
16
71 kgDe Wolf
18
67 kgAgnolutto
19
69 kgSciandri
20
75 kgMizurov
21
68 kgCretskens
22
75 kgDemarbaix
23
64 kgBrandt
24
66 kgFritsch
25
65 kgDelrieu
27
69 kgNocentini
28
60 kgSijmens
29
69 kgVan Hyfte
30
70 kg
Weight (KG) →
Result →
75
60
2
30
# | Rider | Weight (KG) |
---|---|---|
2 | STREEL Marc | 69 |
3 | TCHMIL Andrei | 75 |
5 | FINOT Frédéric | 65 |
6 | JALABERT Nicolas | 68 |
7 | AUS Lauri | 75 |
8 | MCGEE Bradley | 72 |
10 | BERGÈS Stéphane | 68 |
13 | FOFONOV Dmitriy | 65 |
15 | VERBRUGGHE Ief | 69 |
16 | MUSEEUW Johan | 71 |
18 | DE WOLF Steve | 67 |
19 | AGNOLUTTO Christophe | 69 |
20 | SCIANDRI Maximilian | 75 |
21 | MIZUROV Andrey | 68 |
22 | CRETSKENS Wilfried | 75 |
23 | DEMARBAIX Sébastien | 64 |
24 | BRANDT Christophe | 66 |
25 | FRITSCH Nicolas | 65 |
27 | DELRIEU David | 69 |
28 | NOCENTINI Rinaldo | 60 |
29 | SIJMENS Nico | 69 |
30 | VAN HYFTE Paul | 70 |