Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Merckx
1
77 kgLeukemans
2
67 kgFarazijn
4
69 kgStreel
5
69 kgPlanckaert
7
70 kgJenner
8
68 kgGuidi
9
73 kgFinot
10
65 kgPeeters
12
76 kgVeneberg
14
75 kgPoilvet
16
71 kgFritsch
17
65 kgSchnider
20
65 kgCasar
21
63 kgMuseeuw
22
71 kgWielinga
23
68 kgMuravyev
25
75 kgCapelle
26
75 kgHulsmans
28
75 kgHoste
29
80 kgDetilloux
30
62 kg
1
77 kgLeukemans
2
67 kgFarazijn
4
69 kgStreel
5
69 kgPlanckaert
7
70 kgJenner
8
68 kgGuidi
9
73 kgFinot
10
65 kgPeeters
12
76 kgVeneberg
14
75 kgPoilvet
16
71 kgFritsch
17
65 kgSchnider
20
65 kgCasar
21
63 kgMuseeuw
22
71 kgWielinga
23
68 kgMuravyev
25
75 kgCapelle
26
75 kgHulsmans
28
75 kgHoste
29
80 kgDetilloux
30
62 kg
Weight (KG) →
Result →
80
62
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | MERCKX Axel | 77 |
2 | LEUKEMANS Björn | 67 |
4 | FARAZIJN Peter | 69 |
5 | STREEL Marc | 69 |
7 | PLANCKAERT Jo | 70 |
8 | JENNER Christopher | 68 |
9 | GUIDI Fabrizio | 73 |
10 | FINOT Frédéric | 65 |
12 | PEETERS Wilfried | 76 |
14 | VENEBERG Thorwald | 75 |
16 | POILVET Benoît | 71 |
17 | FRITSCH Nicolas | 65 |
20 | SCHNIDER Daniel | 65 |
21 | CASAR Sandy | 63 |
22 | MUSEEUW Johan | 71 |
23 | WIELINGA Remmert | 68 |
25 | MURAVYEV Dmitriy | 75 |
26 | CAPELLE Ludovic | 75 |
28 | HULSMANS Kevin | 75 |
29 | HOSTE Leif | 80 |
30 | DETILLOUX Christophe | 62 |