Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Wandahl
1
61 kgCanal
2
70 kgSegaert
4
79 kgWatson
5
68 kgRonhaar
7
60 kgPenhoët
8
64 kgGautherat
9
70 kgAskey
11
75 kgGruel
12
70 kgHerzog
13
74 kgLambrecht
14
75 kgKramer
15
74 kgMihkels
16
75 kgMilesi
17
70 kgSlock
18
78 kgHaverdings
19
63 kgVandevelde
20
69 kgPollefliet
21
74 kgKessler
22
75 kgLauryssen
23
67 kgKogut
24
77 kgVercouillie
26
66 kgPickrell
27
72 kg
1
61 kgCanal
2
70 kgSegaert
4
79 kgWatson
5
68 kgRonhaar
7
60 kgPenhoët
8
64 kgGautherat
9
70 kgAskey
11
75 kgGruel
12
70 kgHerzog
13
74 kgLambrecht
14
75 kgKramer
15
74 kgMihkels
16
75 kgMilesi
17
70 kgSlock
18
78 kgHaverdings
19
63 kgVandevelde
20
69 kgPollefliet
21
74 kgKessler
22
75 kgLauryssen
23
67 kgKogut
24
77 kgVercouillie
26
66 kgPickrell
27
72 kg
Weight (KG) →
Result →
79
60
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | WANDAHL Frederik | 61 |
2 | CANAL Carlos | 70 |
4 | SEGAERT Alec | 79 |
5 | WATSON Samuel | 68 |
7 | RONHAAR Pim | 60 |
8 | PENHOËT Paul | 64 |
9 | GAUTHERAT Pierre | 70 |
11 | ASKEY Lewis | 75 |
12 | GRUEL Thibaud | 70 |
13 | HERZOG Emil | 74 |
14 | LAMBRECHT Michiel | 75 |
15 | KRAMER Jesse | 74 |
16 | MIHKELS Madis | 75 |
17 | MILESI Lorenzo | 70 |
18 | SLOCK Liam | 78 |
19 | HAVERDINGS David | 63 |
20 | VANDEVELDE Yentl | 69 |
21 | POLLEFLIET Gianluca | 74 |
22 | KESSLER Cole | 75 |
23 | LAURYSSEN Yorben | 67 |
24 | KOGUT Oded | 77 |
26 | VERCOUILLIE Victor | 66 |
27 | PICKRELL Riley | 72 |