Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Edet
1
60 kgCraddock
3
69 kgQuéméneur
4
67 kgMcNally
5
72 kgStewart
7
71 kgSánchez
8
65 kgNordhaug
9
63 kgDeignan
10
65 kgLópez
11
68 kgSprengers
12
60 kgTurgis
13
70 kgJanse van Rensburg
14
74 kgSteels
15
78 kgVoeckler
16
71 kgEdmondson
17
62 kgChetout
18
70 kgTennant
19
82 kgRosskopf
20
74 kgBrammeier
21
72 kgSlik
22
71 kg
1
60 kgCraddock
3
69 kgQuéméneur
4
67 kgMcNally
5
72 kgStewart
7
71 kgSánchez
8
65 kgNordhaug
9
63 kgDeignan
10
65 kgLópez
11
68 kgSprengers
12
60 kgTurgis
13
70 kgJanse van Rensburg
14
74 kgSteels
15
78 kgVoeckler
16
71 kgEdmondson
17
62 kgChetout
18
70 kgTennant
19
82 kgRosskopf
20
74 kgBrammeier
21
72 kgSlik
22
71 kg
Weight (KG) →
Result →
82
60
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | EDET Nicolas | 60 |
3 | CRADDOCK Lawson | 69 |
4 | QUÉMÉNEUR Perrig | 67 |
5 | MCNALLY Mark | 72 |
7 | STEWART Thomas | 71 |
8 | SÁNCHEZ Samuel | 65 |
9 | NORDHAUG Lars Petter | 63 |
10 | DEIGNAN Philip | 65 |
11 | LÓPEZ David | 68 |
12 | SPRENGERS Thomas | 60 |
13 | TURGIS Anthony | 70 |
14 | JANSE VAN RENSBURG Reinardt | 74 |
15 | STEELS Stijn | 78 |
16 | VOECKLER Thomas | 71 |
17 | EDMONDSON Joshua | 62 |
18 | CHETOUT Loïc | 70 |
19 | TENNANT Andrew | 82 |
20 | ROSSKOPF Joey | 74 |
21 | BRAMMEIER Matt | 72 |
22 | SLIK Ivar | 71 |