Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Ewan
1
69 kgBouhanni
2
65 kgGroenewegen
3
70 kgGradek
4
83 kgSbaragli
5
74 kgOpie
6
73 kgHivert
7
62 kgTanfield
8
79.5 kgMora
9
70 kgVon Hoff
10
70 kgLawless
11
72 kgBlythe
12
68 kgKragh Andersen
13
73 kgLooij
14
75 kgMadrazo
16
61 kgHurel
17
66 kgHolmes
18
67 kgPlanckaert
19
65 kgSanz
20
67 kgSwift
21
75 kgGullen
22
65 kg
1
69 kgBouhanni
2
65 kgGroenewegen
3
70 kgGradek
4
83 kgSbaragli
5
74 kgOpie
6
73 kgHivert
7
62 kgTanfield
8
79.5 kgMora
9
70 kgVon Hoff
10
70 kgLawless
11
72 kgBlythe
12
68 kgKragh Andersen
13
73 kgLooij
14
75 kgMadrazo
16
61 kgHurel
17
66 kgHolmes
18
67 kgPlanckaert
19
65 kgSanz
20
67 kgSwift
21
75 kgGullen
22
65 kg
Weight (KG) →
Result →
83
61
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | EWAN Caleb | 69 |
2 | BOUHANNI Nacer | 65 |
3 | GROENEWEGEN Dylan | 70 |
4 | GRADEK Kamil | 83 |
5 | SBARAGLI Kristian | 74 |
6 | OPIE Chris | 73 |
7 | HIVERT Jonathan | 62 |
8 | TANFIELD Harry | 79.5 |
9 | MORA Sebastián | 70 |
10 | VON HOFF Steele | 70 |
11 | LAWLESS Chris | 72 |
12 | BLYTHE Adam | 68 |
13 | KRAGH ANDERSEN Søren | 73 |
14 | LOOIJ André | 75 |
16 | MADRAZO Ángel | 61 |
17 | HUREL Tony | 66 |
18 | HOLMES Matthew | 67 |
19 | PLANCKAERT Baptiste | 65 |
20 | SANZ Enrique | 67 |
21 | SWIFT Connor | 75 |
22 | GULLEN James | 65 |