Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Tanfield
1
79.5 kgCort
3
68 kgVan Avermaet
4
74 kgPrades
6
63 kgPauwels
8
65 kgHivert
9
62 kgSwift
10
69 kgKišerlovski
12
72 kgWalscheid
13
90 kgStorer
14
63 kgCoquard
15
59 kgJourniaux
16
63 kgBevin
17
75 kgHorton
18
70 kgLiepiņš
19
67 kgCras
20
65 kgBookwalter
21
70 kgIrizar
22
67 kgBravo
23
61 kgMinali
24
74 kg
1
79.5 kgCort
3
68 kgVan Avermaet
4
74 kgPrades
6
63 kgPauwels
8
65 kgHivert
9
62 kgSwift
10
69 kgKišerlovski
12
72 kgWalscheid
13
90 kgStorer
14
63 kgCoquard
15
59 kgJourniaux
16
63 kgBevin
17
75 kgHorton
18
70 kgLiepiņš
19
67 kgCras
20
65 kgBookwalter
21
70 kgIrizar
22
67 kgBravo
23
61 kgMinali
24
74 kg
Weight (KG) →
Result →
90
59
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | TANFIELD Harry | 79.5 |
3 | CORT Magnus | 68 |
4 | VAN AVERMAET Greg | 74 |
6 | PRADES Eduard | 63 |
8 | PAUWELS Serge | 65 |
9 | HIVERT Jonathan | 62 |
10 | SWIFT Ben | 69 |
12 | KIŠERLOVSKI Robert | 72 |
13 | WALSCHEID Max | 90 |
14 | STORER Michael | 63 |
15 | COQUARD Bryan | 59 |
16 | JOURNIAUX Axel | 63 |
17 | BEVIN Patrick | 75 |
18 | HORTON Tobyn | 70 |
19 | LIEPIŅŠ Emīls | 67 |
20 | CRAS Steff | 65 |
21 | BOOKWALTER Brent | 70 |
22 | IRIZAR Julen | 67 |
23 | BRAVO Garikoitz | 61 |
24 | MINALI Riccardo | 74 |