Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van Poppel
1
78 kgAsselman
2
69 kgZabel
3
81 kgvan Genechten
4
67 kgFortin
5
78 kgLawless
6
72 kgHennessy
7
80 kgScott
8
68 kgTennant
9
82 kgStewart
10
71 kgVermaerke
11
67 kgBarthe
12
70 kgCullaigh
13
78 kgMcLay
14
72 kgHayter
15
70 kgStokbro
16
70 kgDawson
17
73 kgCavendish
19
70 kgSwift
20
75 kgBigham
21
75 kg
1
78 kgAsselman
2
69 kgZabel
3
81 kgvan Genechten
4
67 kgFortin
5
78 kgLawless
6
72 kgHennessy
7
80 kgScott
8
68 kgTennant
9
82 kgStewart
10
71 kgVermaerke
11
67 kgBarthe
12
70 kgCullaigh
13
78 kgMcLay
14
72 kgHayter
15
70 kgStokbro
16
70 kgDawson
17
73 kgCavendish
19
70 kgSwift
20
75 kgBigham
21
75 kg
Weight (KG) →
Result →
82
67
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | VAN POPPEL Boy | 78 |
2 | ASSELMAN Jesper | 69 |
3 | ZABEL Rick | 81 |
4 | VAN GENECHTEN Jonas | 67 |
5 | FORTIN Filippo | 78 |
6 | LAWLESS Chris | 72 |
7 | HENNESSY Jacob | 80 |
8 | SCOTT Jacob | 68 |
9 | TENNANT Andrew | 82 |
10 | STEWART Thomas | 71 |
11 | VERMAERKE Kevin | 67 |
12 | BARTHE Cyril | 70 |
13 | CULLAIGH Gabriel | 78 |
14 | MCLAY Daniel | 72 |
15 | HAYTER Ethan | 70 |
16 | STOKBRO Andreas | 70 |
17 | DAWSON Christopher | 73 |
19 | CAVENDISH Mark | 70 |
20 | SWIFT Connor | 75 |
21 | BIGHAM Daniel | 75 |