Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 15
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Guerini
3
65 kgVan Petegem
6
70 kgVirenque
8
65 kgVandenbroucke
12
67 kgSimon
15
70 kgHeulot
16
69 kgLoda
17
73 kgHundertmarck
18
72 kgBrochard
19
68 kgSciandri
21
75 kgMadouas
24
70 kgHoffman
25
80 kgPiccoli
30
64 kgMichaelsen
31
79 kgPiątek
32
71 kgBlaudzun
34
66 kgKnaven
38
68 kgLivingston
41
70 kgPeron
42
70 kgBrasi
43
67 kgRichard
46
67 kg
3
65 kgVan Petegem
6
70 kgVirenque
8
65 kgVandenbroucke
12
67 kgSimon
15
70 kgHeulot
16
69 kgLoda
17
73 kgHundertmarck
18
72 kgBrochard
19
68 kgSciandri
21
75 kgMadouas
24
70 kgHoffman
25
80 kgPiccoli
30
64 kgMichaelsen
31
79 kgPiątek
32
71 kgBlaudzun
34
66 kgKnaven
38
68 kgLivingston
41
70 kgPeron
42
70 kgBrasi
43
67 kgRichard
46
67 kg
Weight (KG) →
Result →
80
64
3
46
# | Rider | Weight (KG) |
---|---|---|
3 | GUERINI Giuseppe | 65 |
6 | VAN PETEGEM Peter | 70 |
8 | VIRENQUE Richard | 65 |
12 | VANDENBROUCKE Frank | 67 |
15 | SIMON François | 70 |
16 | HEULOT Stéphane | 69 |
17 | LODA Nicola | 73 |
18 | HUNDERTMARCK Kai | 72 |
19 | BROCHARD Laurent | 68 |
21 | SCIANDRI Maximilian | 75 |
24 | MADOUAS Laurent | 70 |
25 | HOFFMAN Tristan | 80 |
30 | PICCOLI Mariano | 64 |
31 | MICHAELSEN Lars | 79 |
32 | PIĄTEK Zbigniew | 71 |
34 | BLAUDZUN Michael | 66 |
38 | KNAVEN Servais | 68 |
41 | LIVINGSTON Kevin | 70 |
42 | PERON Andrea | 70 |
43 | BRASI Rossano | 67 |
46 | RICHARD Pascal | 67 |