Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Txurruka
1
58 kgGrmay
2
63 kgBoaro
3
64 kgWilmann
4
69 kgMadrazo
5
61 kgFormolo
6
62 kgTusveld
7
70 kgde Maar
8
70 kgJacobs
9
68 kgFerrari
10
64 kgJanse van Rensburg
11
63 kgAramendia
13
72 kgStewart
14
71 kgDeclercq
15
78 kgHansen
16
60 kgHavik
17
73 kgDe Marchi
18
65 kgHabeaux
19
68 kgBazzana
20
63.5 kg
1
58 kgGrmay
2
63 kgBoaro
3
64 kgWilmann
4
69 kgMadrazo
5
61 kgFormolo
6
62 kgTusveld
7
70 kgde Maar
8
70 kgJacobs
9
68 kgFerrari
10
64 kgJanse van Rensburg
11
63 kgAramendia
13
72 kgStewart
14
71 kgDeclercq
15
78 kgHansen
16
60 kgHavik
17
73 kgDe Marchi
18
65 kgHabeaux
19
68 kgBazzana
20
63.5 kg
Weight (KG) →
Result →
78
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | TXURRUKA Amets | 58 |
2 | GRMAY Tsgabu | 63 |
3 | BOARO Manuele | 64 |
4 | WILMANN Frederik | 69 |
5 | MADRAZO Ángel | 61 |
6 | FORMOLO Davide | 62 |
7 | TUSVELD Martijn | 70 |
8 | DE MAAR Marc | 70 |
9 | JACOBS Pieter | 68 |
10 | FERRARI Fabricio | 64 |
11 | JANSE VAN RENSBURG Jacques | 63 |
13 | ARAMENDIA Javier | 72 |
14 | STEWART Thomas | 71 |
15 | DECLERCQ Tim | 78 |
16 | HANSEN Jesper | 60 |
17 | HAVIK Piotr | 73 |
18 | DE MARCHI Alessandro | 65 |
19 | HABEAUX Grégory | 68 |
20 | BAZZANA Alessandro | 63.5 |