Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Kristoff
1
78 kgEnger
2
69 kgTrusov
3
77 kgBaugnies
4
69 kgSprengers
5
60 kgCort
6
68 kgVan Asbroeck
7
72 kgSbaragli
8
74 kgBazzana
9
63.5 kgMadrazo
10
61 kgBettiol
12
69 kgJacobs
13
68 kgLasca
14
65 kgReihs
15
75 kgKreder
16
71 kgMarcato
19
67 kgHavik
20
73 kgBodnar
22
68 kgGerts
23
71 kgHabeaux
24
68 kg
1
78 kgEnger
2
69 kgTrusov
3
77 kgBaugnies
4
69 kgSprengers
5
60 kgCort
6
68 kgVan Asbroeck
7
72 kgSbaragli
8
74 kgBazzana
9
63.5 kgMadrazo
10
61 kgBettiol
12
69 kgJacobs
13
68 kgLasca
14
65 kgReihs
15
75 kgKreder
16
71 kgMarcato
19
67 kgHavik
20
73 kgBodnar
22
68 kgGerts
23
71 kgHabeaux
24
68 kg
Weight (KG) →
Result →
78
60
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | KRISTOFF Alexander | 78 |
2 | ENGER Sondre Holst | 69 |
3 | TRUSOV Nikolay | 77 |
4 | BAUGNIES Jérôme | 69 |
5 | SPRENGERS Thomas | 60 |
6 | CORT Magnus | 68 |
7 | VAN ASBROECK Tom | 72 |
8 | SBARAGLI Kristian | 74 |
9 | BAZZANA Alessandro | 63.5 |
10 | MADRAZO Ángel | 61 |
12 | BETTIOL Alberto | 69 |
13 | JACOBS Pieter | 68 |
14 | LASCA Francesco | 65 |
15 | REIHS Michael | 75 |
16 | KREDER Wesley | 71 |
19 | MARCATO Marco | 67 |
20 | HAVIK Piotr | 73 |
22 | BODNAR Łukasz | 68 |
23 | GERTS Floris | 71 |
24 | HABEAUX Grégory | 68 |