Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Kristoff
1
78 kgImpey
2
72 kgValgren
3
71 kgKragh Andersen
4
72 kgStuyven
5
78 kgBoasson Hagen
6
75 kgSbaragli
7
74 kgHaller
8
72 kgTolhoek
9
61 kgMeijers
10
68 kgLooij
11
75 kgPedersen
12
76 kgKragh Andersen
13
73 kgMarcato
14
67 kgWetterhall
15
70 kgMol
16
83 kgBarbero
18
66 kgPodlaski
19
68 kgTrusov
20
77 kgDougall
22
72 kgGuldhammer
24
66 kgCort
25
68 kgPrades
26
63 kg
1
78 kgImpey
2
72 kgValgren
3
71 kgKragh Andersen
4
72 kgStuyven
5
78 kgBoasson Hagen
6
75 kgSbaragli
7
74 kgHaller
8
72 kgTolhoek
9
61 kgMeijers
10
68 kgLooij
11
75 kgPedersen
12
76 kgKragh Andersen
13
73 kgMarcato
14
67 kgWetterhall
15
70 kgMol
16
83 kgBarbero
18
66 kgPodlaski
19
68 kgTrusov
20
77 kgDougall
22
72 kgGuldhammer
24
66 kgCort
25
68 kgPrades
26
63 kg
Weight (KG) →
Result →
83
61
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | KRISTOFF Alexander | 78 |
2 | IMPEY Daryl | 72 |
3 | VALGREN Michael | 71 |
4 | KRAGH ANDERSEN Asbjørn | 72 |
5 | STUYVEN Jasper | 78 |
6 | BOASSON HAGEN Edvald | 75 |
7 | SBARAGLI Kristian | 74 |
8 | HALLER Marco | 72 |
9 | TOLHOEK Antwan | 61 |
10 | MEIJERS Jeroen | 68 |
11 | LOOIJ André | 75 |
12 | PEDERSEN Mads | 76 |
13 | KRAGH ANDERSEN Søren | 73 |
14 | MARCATO Marco | 67 |
15 | WETTERHALL Alexander | 70 |
16 | MOL Wouter | 83 |
18 | BARBERO Carlos | 66 |
19 | PODLASKI Michał | 68 |
20 | TRUSOV Nikolay | 77 |
22 | DOUGALL Nic | 72 |
24 | GULDHAMMER Rasmus | 66 |
25 | CORT Magnus | 68 |
26 | PRADES Eduard | 63 |