Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Howard
1
72 kgKristoff
2
78 kgPasqualon
3
75 kgKoch
4
75 kgAsselman
5
69 kgCaruso
6
67 kgJensen
7
67 kgTrusov
8
77 kgClarke
9
81 kgKamp
10
74 kgMager
11
60 kgvan der Lijke
13
61 kgvan Ginneken
14
72 kgMørkøv
15
71 kgHagen
16
65 kgDe Ketele
17
66 kgVan Lerberghe
18
83 kgRosskopf
19
74 kgMeijers
20
68 kgVergaerde
21
74 kgBudding
22
74 kgPhelan
24
73 kgKorsæth
25
84 kg
1
72 kgKristoff
2
78 kgPasqualon
3
75 kgKoch
4
75 kgAsselman
5
69 kgCaruso
6
67 kgJensen
7
67 kgTrusov
8
77 kgClarke
9
81 kgKamp
10
74 kgMager
11
60 kgvan der Lijke
13
61 kgvan Ginneken
14
72 kgMørkøv
15
71 kgHagen
16
65 kgDe Ketele
17
66 kgVan Lerberghe
18
83 kgRosskopf
19
74 kgMeijers
20
68 kgVergaerde
21
74 kgBudding
22
74 kgPhelan
24
73 kgKorsæth
25
84 kg
Weight (KG) →
Result →
84
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HOWARD Leigh | 72 |
2 | KRISTOFF Alexander | 78 |
3 | PASQUALON Andrea | 75 |
4 | KOCH Jonas | 75 |
5 | ASSELMAN Jesper | 69 |
6 | CARUSO Damiano | 67 |
7 | JENSEN August | 67 |
8 | TRUSOV Nikolay | 77 |
9 | CLARKE Will | 81 |
10 | KAMP Alexander | 74 |
11 | MAGER Christian | 60 |
13 | VAN DER LIJKE Nick | 61 |
14 | VAN GINNEKEN Sjoerd | 72 |
15 | MØRKØV Michael | 71 |
16 | HAGEN Carl Fredrik | 65 |
17 | DE KETELE Kenny | 66 |
18 | VAN LERBERGHE Bert | 83 |
19 | ROSSKOPF Joey | 74 |
20 | MEIJERS Jeroen | 68 |
21 | VERGAERDE Otto | 74 |
22 | BUDDING Martijn | 74 |
24 | PHELAN Adam | 73 |
25 | KORSÆTH Truls Engen | 84 |