Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Boasson Hagen
1
75 kgTurek
2
72 kgJensen
3
67 kgRoosen
4
78 kgVan Gestel
5
74 kgReguigui
6
69 kgIrisarri
7
66 kgBoom
8
75 kgVeyhe
9
77 kgvan der Lijke
10
61 kgSáez
11
75 kgLooij
12
75 kgKoch
13
75 kgAsgreen
15
75 kgKaczmarek
17
66 kgPasqualon
18
75 kgPluciński
19
59 kgJansen
20
83 kgCarbel
21
73 kgMeijers
22
68 kgMolano
24
72 kgKämna
25
65 kg
1
75 kgTurek
2
72 kgJensen
3
67 kgRoosen
4
78 kgVan Gestel
5
74 kgReguigui
6
69 kgIrisarri
7
66 kgBoom
8
75 kgVeyhe
9
77 kgvan der Lijke
10
61 kgSáez
11
75 kgLooij
12
75 kgKoch
13
75 kgAsgreen
15
75 kgKaczmarek
17
66 kgPasqualon
18
75 kgPluciński
19
59 kgJansen
20
83 kgCarbel
21
73 kgMeijers
22
68 kgMolano
24
72 kgKämna
25
65 kg
Weight (KG) →
Result →
83
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
2 | TUREK Daniel | 72 |
3 | JENSEN August | 67 |
4 | ROOSEN Timo | 78 |
5 | VAN GESTEL Dries | 74 |
6 | REGUIGUI Youcef | 69 |
7 | IRISARRI Jon | 66 |
8 | BOOM Lars | 75 |
9 | VEYHE Torkil | 77 |
10 | VAN DER LIJKE Nick | 61 |
11 | SÁEZ Héctor | 75 |
12 | LOOIJ André | 75 |
13 | KOCH Jonas | 75 |
15 | ASGREEN Kasper | 75 |
17 | KACZMAREK Jakub | 66 |
18 | PASQUALON Andrea | 75 |
19 | PLUCIŃSKI Leszek | 59 |
20 | JANSEN Amund Grøndahl | 83 |
21 | CARBEL Michael | 73 |
22 | MEIJERS Jeroen | 68 |
24 | MOLANO Juan Sebastián | 72 |
25 | KÄMNA Lennard | 65 |