Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Albasini
1
65 kgBoasson Hagen
2
75 kgJansen
3
83 kgLigthart
4
72 kgJakobsen
5
78 kgRoosen
6
78 kgLambrecht
7
56 kgHofland
8
71 kgHalvorsen
9
69 kgGogl
10
71 kgSisr
11
72 kgMonfort
13
66 kgJensen
14
67 kgGrosu
15
68 kgGerts
16
71 kgGuerreiro
17
65 kgSoto
18
66 kgKragh Andersen
19
73 kgMeijers
20
68 kgEarle
21
70 kgMartinelli
22
71 kgGate
23
71 kgVan Gestel
25
74 kg
1
65 kgBoasson Hagen
2
75 kgJansen
3
83 kgLigthart
4
72 kgJakobsen
5
78 kgRoosen
6
78 kgLambrecht
7
56 kgHofland
8
71 kgHalvorsen
9
69 kgGogl
10
71 kgSisr
11
72 kgMonfort
13
66 kgJensen
14
67 kgGrosu
15
68 kgGerts
16
71 kgGuerreiro
17
65 kgSoto
18
66 kgKragh Andersen
19
73 kgMeijers
20
68 kgEarle
21
70 kgMartinelli
22
71 kgGate
23
71 kgVan Gestel
25
74 kg
Weight (KG) →
Result →
83
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ALBASINI Michael | 65 |
2 | BOASSON HAGEN Edvald | 75 |
3 | JANSEN Amund Grøndahl | 83 |
4 | LIGTHART Pim | 72 |
5 | JAKOBSEN Fabio | 78 |
6 | ROOSEN Timo | 78 |
7 | LAMBRECHT Bjorg | 56 |
8 | HOFLAND Moreno | 71 |
9 | HALVORSEN Kristoffer | 69 |
10 | GOGL Michael | 71 |
11 | SISR František | 72 |
13 | MONFORT Maxime | 66 |
14 | JENSEN August | 67 |
15 | GROSU Eduard-Michael | 68 |
16 | GERTS Floris | 71 |
17 | GUERREIRO Ruben | 65 |
18 | SOTO Nelson Andrés | 66 |
19 | KRAGH ANDERSEN Søren | 73 |
20 | MEIJERS Jeroen | 68 |
21 | EARLE Nathan | 70 |
22 | MARTINELLI Davide | 71 |
23 | GATE Aaron | 71 |
25 | VAN GESTEL Dries | 74 |