Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 37
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Sentjens
1
75 kgPate
2
73 kgNuyens
3
68 kgVan Huffel
5
66 kgSteegmans
7
82 kgBoonen
8
82 kgMutsaars
11
67 kgKashechkin
12
70 kgKopp
16
68 kgKuyckx
17
68 kgDe Vocht
18
78 kgVan Impe
33
75 kgGreipel
40
80 kgMcCarty
44
68 kgDevolder
46
72 kgKnees
47
81 kgBarbé
49
75 kgDe Fauw
51
77 kg
1
75 kgPate
2
73 kgNuyens
3
68 kgVan Huffel
5
66 kgSteegmans
7
82 kgBoonen
8
82 kgMutsaars
11
67 kgKashechkin
12
70 kgKopp
16
68 kgKuyckx
17
68 kgDe Vocht
18
78 kgVan Impe
33
75 kgGreipel
40
80 kgMcCarty
44
68 kgDevolder
46
72 kgKnees
47
81 kgBarbé
49
75 kgDe Fauw
51
77 kg
Weight (KG) →
Result →
82
66
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | SENTJENS Roy | 75 |
2 | PATE Danny | 73 |
3 | NUYENS Nick | 68 |
5 | VAN HUFFEL Wim | 66 |
7 | STEEGMANS Gert | 82 |
8 | BOONEN Tom | 82 |
11 | MUTSAARS Ronald | 67 |
12 | KASHECHKIN Andrey | 70 |
16 | KOPP David | 68 |
17 | KUYCKX Jan | 68 |
18 | DE VOCHT Wim | 78 |
33 | VAN IMPE Kevin | 75 |
40 | GREIPEL André | 80 |
44 | MCCARTY Jonathan Patrick | 68 |
46 | DEVOLDER Stijn | 72 |
47 | KNEES Christian | 81 |
49 | BARBÉ Koen | 75 |
51 | DE FAUW Dimitri | 77 |