Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 93
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Nuyens
1
68 kgDe Vocht
2
78 kgGilbert
4
75 kgVansummeren
5
79 kgSteegmans
6
82 kgRosseler
8
78 kgBarbé
13
75 kgElijzen
15
80 kgDe Weert
16
70 kgGiling
17
72 kgRast
19
80 kgPosthuma
20
76 kgHovelijnck
22
75 kgAlbasini
28
65 kgMertens
30
67 kgDockx
33
64 kgde Wilde
35
74 kgRenders
38
63 kgFrischkorn
60
68 kgLagutin
61
68 kgZaugg
63
58 kgMouris
64
91 kgNeirynck
68
71 kg
1
68 kgDe Vocht
2
78 kgGilbert
4
75 kgVansummeren
5
79 kgSteegmans
6
82 kgRosseler
8
78 kgBarbé
13
75 kgElijzen
15
80 kgDe Weert
16
70 kgGiling
17
72 kgRast
19
80 kgPosthuma
20
76 kgHovelijnck
22
75 kgAlbasini
28
65 kgMertens
30
67 kgDockx
33
64 kgde Wilde
35
74 kgRenders
38
63 kgFrischkorn
60
68 kgLagutin
61
68 kgZaugg
63
58 kgMouris
64
91 kgNeirynck
68
71 kg
Weight (KG) →
Result →
91
58
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | NUYENS Nick | 68 |
2 | DE VOCHT Wim | 78 |
4 | GILBERT Philippe | 75 |
5 | VANSUMMEREN Johan | 79 |
6 | STEEGMANS Gert | 82 |
8 | ROSSELER Sébastien | 78 |
13 | BARBÉ Koen | 75 |
15 | ELIJZEN Michiel | 80 |
16 | DE WEERT Kevin | 70 |
17 | GILING Bas | 72 |
19 | RAST Grégory | 80 |
20 | POSTHUMA Joost | 76 |
22 | HOVELIJNCK Kurt | 75 |
28 | ALBASINI Michael | 65 |
30 | MERTENS Pieter | 67 |
33 | DOCKX Bart | 64 |
35 | DE WILDE Sjef | 74 |
38 | RENDERS Sven | 63 |
60 | FRISCHKORN William | 68 |
61 | LAGUTIN Sergey | 68 |
63 | ZAUGG Oliver | 58 |
64 | MOURIS Jens | 91 |
68 | NEIRYNCK Kevin | 71 |