Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 32
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Chevrier
2
56 kgDueñas
3
61 kgVervaeke
4
68 kgSaggiorato
7
58 kgLatour
8
66 kgCarapaz
9
62 kgGougeard
11
70 kgBidard
17
65 kgSchulting
21
70 kgYates
22
58 kgMartin
24
55 kgGouault
26
61 kgPearson
30
53 kgPeyskens
31
69 kgDumourier
33
60 kgVerstraeten
38
67 kgPeters
39
72 kgMas
49
69 kgDraperi
51
70 kg
2
56 kgDueñas
3
61 kgVervaeke
4
68 kgSaggiorato
7
58 kgLatour
8
66 kgCarapaz
9
62 kgGougeard
11
70 kgBidard
17
65 kgSchulting
21
70 kgYates
22
58 kgMartin
24
55 kgGouault
26
61 kgPearson
30
53 kgPeyskens
31
69 kgDumourier
33
60 kgVerstraeten
38
67 kgPeters
39
72 kgMas
49
69 kgDraperi
51
70 kg
Weight (KG) →
Result →
72
53
2
51
# | Rider | Weight (KG) |
---|---|---|
2 | CHEVRIER Clément | 56 |
3 | DUEÑAS Moisés | 61 |
4 | VERVAEKE Louis | 68 |
7 | SAGGIORATO Mirco | 58 |
8 | LATOUR Pierre | 66 |
9 | CARAPAZ Richard | 62 |
11 | GOUGEARD Alexis | 70 |
17 | BIDARD François | 65 |
21 | SCHULTING Peter | 70 |
22 | YATES Adam | 58 |
24 | MARTIN Guillaume | 55 |
26 | GOUAULT Pierre | 61 |
30 | PEARSON Daniel | 53 |
31 | PEYSKENS Dimitri | 69 |
33 | DUMOURIER Florian | 60 |
38 | VERSTRAETEN Jari | 67 |
39 | PETERS Nans | 72 |
49 | MAS Lluís | 69 |
51 | DRAPERI Matteo | 70 |