Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Chevrier
1
56 kgVervaeke
3
68 kgDueñas
5
61 kgSaggiorato
9
58 kgLatour
10
66 kgCarapaz
16
62 kgMartin
17
55 kgGougeard
18
70 kgBidard
21
65 kgMas
23
69 kgPearson
25
53 kgSchulting
26
70 kgPeters
30
72 kgYates
32
58 kgPeyskens
36
69 kgGouault
37
61 kgDumourier
42
60 kgVerstraeten
49
67 kgDraperi
50
70 kg
1
56 kgVervaeke
3
68 kgDueñas
5
61 kgSaggiorato
9
58 kgLatour
10
66 kgCarapaz
16
62 kgMartin
17
55 kgGougeard
18
70 kgBidard
21
65 kgMas
23
69 kgPearson
25
53 kgSchulting
26
70 kgPeters
30
72 kgYates
32
58 kgPeyskens
36
69 kgGouault
37
61 kgDumourier
42
60 kgVerstraeten
49
67 kgDraperi
50
70 kg
Weight (KG) →
Result →
72
53
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | CHEVRIER Clément | 56 |
3 | VERVAEKE Louis | 68 |
5 | DUEÑAS Moisés | 61 |
9 | SAGGIORATO Mirco | 58 |
10 | LATOUR Pierre | 66 |
16 | CARAPAZ Richard | 62 |
17 | MARTIN Guillaume | 55 |
18 | GOUGEARD Alexis | 70 |
21 | BIDARD François | 65 |
23 | MAS Lluís | 69 |
25 | PEARSON Daniel | 53 |
26 | SCHULTING Peter | 70 |
30 | PETERS Nans | 72 |
32 | YATES Adam | 58 |
36 | PEYSKENS Dimitri | 69 |
37 | GOUAULT Pierre | 61 |
42 | DUMOURIER Florian | 60 |
49 | VERSTRAETEN Jari | 67 |
50 | DRAPERI Matteo | 70 |