Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.7 * weight + 245
This means that on average for every extra kilogram weight a rider loses -2.7 positions in the result.
Montauban
1
68 kgBrustenga
3
80 kgMolini
6
71 kgFrehen
7
66 kgKaesemans
16
66 kgKielich
26
73 kgSander Hansen
27
68 kgVan Vuchelen
31
74 kgDelacroix
32
70 kgAvadanian
37
66 kgHaest
43
70 kgLeclainche
46
65 kgHuens
63
74 kgJensen
67
75 kgCapron
72
59 kgLaurent
95
59 kgGarcía Pierna
110
58 kgHaest
119
70 kgBenech
120
65 kgDelphis
123
70 kgVandeputte
125
73 kgMaas
134
64 kg
1
68 kgBrustenga
3
80 kgMolini
6
71 kgFrehen
7
66 kgKaesemans
16
66 kgKielich
26
73 kgSander Hansen
27
68 kgVan Vuchelen
31
74 kgDelacroix
32
70 kgAvadanian
37
66 kgHaest
43
70 kgLeclainche
46
65 kgHuens
63
74 kgJensen
67
75 kgCapron
72
59 kgLaurent
95
59 kgGarcía Pierna
110
58 kgHaest
119
70 kgBenech
120
65 kgDelphis
123
70 kgVandeputte
125
73 kgMaas
134
64 kg
Weight (KG) →
Result →
80
58
1
134
# | Rider | Weight (KG) |
---|---|---|
1 | MONTAUBAN Jeremy | 68 |
3 | BRUSTENGA Marc | 80 |
6 | MOLINI Federico | 71 |
7 | FREHEN Jeremy | 66 |
16 | KAESEMANS Jasper | 66 |
26 | KIELICH Timo | 73 |
27 | SANDER HANSEN Marcus | 68 |
31 | VAN VUCHELEN Tom | 74 |
32 | DELACROIX Théo | 70 |
37 | AVADANIAN Lucas | 66 |
43 | HAEST Jasper | 70 |
46 | LECLAINCHE Gwen | 65 |
63 | HUENS Rémi | 74 |
67 | JENSEN Frederik Irgens | 75 |
72 | CAPRON Rémi | 59 |
95 | LAURENT Giovanni | 59 |
110 | GARCÍA PIERNA Carlos | 58 |
119 | HAEST Kevin | 70 |
120 | BENECH Pierre | 65 |
123 | DELPHIS Thomas | 70 |
125 | VANDEPUTTE Niels | 73 |
134 | MAAS Danny | 64 |