Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Frehen
1
66 kgVan Vuchelen
1
74 kgJensen
2
75 kgSander Hansen
2
68 kgMolini
3
71 kgMontauban
5
68 kgAvadanian
6
66 kgHuens
8
74 kgBrustenga
9
80 kgBennassar
9
75 kgGarcía Pierna
9
58 kgDelacroix
10
70 kgLaurent
11
59 kgKielich
12
73 kgVandeputte
12
73 kgDelphis
15
70 kgLeclainche
15
65 kgCapron
21
59 kgMaas
24
64 kgHaest
24
70 kgHaest
24
70 kg
1
66 kgVan Vuchelen
1
74 kgJensen
2
75 kgSander Hansen
2
68 kgMolini
3
71 kgMontauban
5
68 kgAvadanian
6
66 kgHuens
8
74 kgBrustenga
9
80 kgBennassar
9
75 kgGarcía Pierna
9
58 kgDelacroix
10
70 kgLaurent
11
59 kgKielich
12
73 kgVandeputte
12
73 kgDelphis
15
70 kgLeclainche
15
65 kgCapron
21
59 kgMaas
24
64 kgHaest
24
70 kgHaest
24
70 kg
Weight (KG) →
Result →
80
58
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | FREHEN Jeremy | 66 |
1 | VAN VUCHELEN Tom | 74 |
2 | JENSEN Frederik Irgens | 75 |
2 | SANDER HANSEN Marcus | 68 |
3 | MOLINI Federico | 71 |
5 | MONTAUBAN Jeremy | 68 |
6 | AVADANIAN Lucas | 66 |
8 | HUENS Rémi | 74 |
9 | BRUSTENGA Marc | 80 |
9 | BENNASSAR Joan Marti | 75 |
9 | GARCÍA PIERNA Carlos | 58 |
10 | DELACROIX Théo | 70 |
11 | LAURENT Giovanni | 59 |
12 | KIELICH Timo | 73 |
12 | VANDEPUTTE Niels | 73 |
15 | DELPHIS Thomas | 70 |
15 | LECLAINCHE Gwen | 65 |
21 | CAPRON Rémi | 59 |
24 | MAAS Danny | 64 |
24 | HAEST Jasper | 70 |
24 | HAEST Kevin | 70 |