Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.2 * weight + 255
This means that on average for every extra kilogram weight a rider loses -3.2 positions in the result.
Molini
1
71 kgHuens
2
74 kgFrehen
13
66 kgSander Hansen
14
68 kgAvadanian
23
66 kgMontauban
27
68 kgJensen
30
75 kgHaest
31
70 kgDelacroix
33
70 kgVan Vuchelen
34
74 kgCapron
49
59 kgDelphis
54
70 kgHaest
57
70 kgLeclainche
71
65 kgGarcía Pierna
81
58 kgLaurent
88
59 kg
1
71 kgHuens
2
74 kgFrehen
13
66 kgSander Hansen
14
68 kgAvadanian
23
66 kgMontauban
27
68 kgJensen
30
75 kgHaest
31
70 kgDelacroix
33
70 kgVan Vuchelen
34
74 kgCapron
49
59 kgDelphis
54
70 kgHaest
57
70 kgLeclainche
71
65 kgGarcía Pierna
81
58 kgLaurent
88
59 kg
Weight (KG) →
Result →
75
58
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | MOLINI Federico | 71 |
2 | HUENS Rémi | 74 |
13 | FREHEN Jeremy | 66 |
14 | SANDER HANSEN Marcus | 68 |
23 | AVADANIAN Lucas | 66 |
27 | MONTAUBAN Jeremy | 68 |
30 | JENSEN Frederik Irgens | 75 |
31 | HAEST Jasper | 70 |
33 | DELACROIX Théo | 70 |
34 | VAN VUCHELEN Tom | 74 |
49 | CAPRON Rémi | 59 |
54 | DELPHIS Thomas | 70 |
57 | HAEST Kevin | 70 |
71 | LECLAINCHE Gwen | 65 |
81 | GARCÍA PIERNA Carlos | 58 |
88 | LAURENT Giovanni | 59 |