Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 34
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Page
1
71 kgToumire
2
69 kgTene
3
72 kgRodríguez
10
67 kgSerrano
11
60 kgTulett
12
56 kgCortjens
13
76 kgBoven
15
62 kgLubbers
16
68 kgParet-Peintre
17
52 kgCoqueret
18
69 kgVan Eetvelt
21
63 kgSenicourt
26
64 kgRonhaar
34
60 kgvan Sintmaartensdijk
35
77 kgGeorge
39
78 kgCraps
44
67 kgMichel
52
72 kgTrastour
55
75 kgBettendorff
56
74 kg
1
71 kgToumire
2
69 kgTene
3
72 kgRodríguez
10
67 kgSerrano
11
60 kgTulett
12
56 kgCortjens
13
76 kgBoven
15
62 kgLubbers
16
68 kgParet-Peintre
17
52 kgCoqueret
18
69 kgVan Eetvelt
21
63 kgSenicourt
26
64 kgRonhaar
34
60 kgvan Sintmaartensdijk
35
77 kgGeorge
39
78 kgCraps
44
67 kgMichel
52
72 kgTrastour
55
75 kgBettendorff
56
74 kg
Weight (KG) →
Result →
78
52
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | PAGE Hugo | 71 |
2 | TOUMIRE Hugo | 69 |
3 | TENE Rotem | 72 |
10 | RODRÍGUEZ Carlos | 67 |
11 | SERRANO Javier | 60 |
12 | TULETT Ben | 56 |
13 | CORTJENS Ryan | 76 |
15 | BOVEN Lars | 62 |
16 | LUBBERS Christiaan | 68 |
17 | PARET-PEINTRE Valentin | 52 |
18 | COQUERET Louis | 69 |
21 | VAN EETVELT Lennert | 63 |
26 | SENICOURT Kylian | 64 |
34 | RONHAAR Pim | 60 |
35 | VAN SINTMAARTENSDIJK Roel | 77 |
39 | GEORGE Alfred | 78 |
44 | CRAPS Lars | 67 |
52 | MICHEL Simon | 72 |
55 | TRASTOUR Loris | 75 |
56 | BETTENDORFF Loïc | 74 |