Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.2 * weight + 178
This means that on average for every extra kilogram weight a rider loses -2.2 positions in the result.
Sokolov
2
70 kgLebas
3
65 kgKvist
4
68 kgJodts
6
74 kgTurgot
8
73 kgBakelants
9
67 kgPrades
10
56 kgKreder
11
67 kgQuéméneur
15
67 kgHegreberg
16
72 kgDockx
18
64 kgGhyselinck
24
74 kgCosme
39
61 kgvan Amerongen
42
70 kgHerrada
54
65 kgPardilla
59
65 kgde la Parte
69
64 kgPeyroton-Dartet
73
65 kgCazaux
76
59 kgGroenendaal
83
66 kg
2
70 kgLebas
3
65 kgKvist
4
68 kgJodts
6
74 kgTurgot
8
73 kgBakelants
9
67 kgPrades
10
56 kgKreder
11
67 kgQuéméneur
15
67 kgHegreberg
16
72 kgDockx
18
64 kgGhyselinck
24
74 kgCosme
39
61 kgvan Amerongen
42
70 kgHerrada
54
65 kgPardilla
59
65 kgde la Parte
69
64 kgPeyroton-Dartet
73
65 kgCazaux
76
59 kgGroenendaal
83
66 kg
Weight (KG) →
Result →
74
56
2
83
# | Rider | Weight (KG) |
---|---|---|
2 | SOKOLOV Evgeny | 70 |
3 | LEBAS Thomas | 65 |
4 | KVIST Thomas Vedel | 68 |
6 | JODTS Sven | 74 |
8 | TURGOT Sébastien | 73 |
9 | BAKELANTS Jan | 67 |
10 | PRADES Benjamín | 56 |
11 | KREDER Michel | 67 |
15 | QUÉMÉNEUR Perrig | 67 |
16 | HEGREBERG Morten | 72 |
18 | DOCKX Gert | 64 |
24 | GHYSELINCK Jan | 74 |
39 | COSME Antonio | 61 |
42 | VAN AMERONGEN Thijs | 70 |
54 | HERRADA José | 65 |
59 | PARDILLA Sergio | 65 |
69 | DE LA PARTE Víctor | 64 |
73 | PEYROTON-DARTET Thomas | 65 |
76 | CAZAUX Pierre | 59 |
83 | GROENENDAAL Richard | 66 |