Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Cazaux
2
59 kgQuéméneur
4
67 kgBakelants
6
67 kgHerrada
8
65 kgKreder
9
67 kgCosme
11
61 kgDockx
12
64 kgLebas
13
65 kgGhyselinck
14
74 kgHegreberg
15
72 kgPardilla
18
65 kgKvist
20
68 kgGroenendaal
22
66 kgSokolov
33
70 kgde la Parte
37
64 kgPeyroton-Dartet
58
65 kgvan Amerongen
64
70 kgTurgot
66
73 kgPrades
70
56 kg
2
59 kgQuéméneur
4
67 kgBakelants
6
67 kgHerrada
8
65 kgKreder
9
67 kgCosme
11
61 kgDockx
12
64 kgLebas
13
65 kgGhyselinck
14
74 kgHegreberg
15
72 kgPardilla
18
65 kgKvist
20
68 kgGroenendaal
22
66 kgSokolov
33
70 kgde la Parte
37
64 kgPeyroton-Dartet
58
65 kgvan Amerongen
64
70 kgTurgot
66
73 kgPrades
70
56 kg
Weight (KG) →
Result →
74
56
2
70
# | Rider | Weight (KG) |
---|---|---|
2 | CAZAUX Pierre | 59 |
4 | QUÉMÉNEUR Perrig | 67 |
6 | BAKELANTS Jan | 67 |
8 | HERRADA José | 65 |
9 | KREDER Michel | 67 |
11 | COSME Antonio | 61 |
12 | DOCKX Gert | 64 |
13 | LEBAS Thomas | 65 |
14 | GHYSELINCK Jan | 74 |
15 | HEGREBERG Morten | 72 |
18 | PARDILLA Sergio | 65 |
20 | KVIST Thomas Vedel | 68 |
22 | GROENENDAAL Richard | 66 |
33 | SOKOLOV Evgeny | 70 |
37 | DE LA PARTE Víctor | 64 |
58 | PEYROTON-DARTET Thomas | 65 |
64 | VAN AMERONGEN Thijs | 70 |
66 | TURGOT Sébastien | 73 |
70 | PRADES Benjamín | 56 |