Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 94
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Pardilla
1
65 kgHerrada
2
65 kgKreder
4
67 kgCazaux
8
59 kgLebas
9
65 kgQuéméneur
12
67 kgGroenendaal
14
66 kgDockx
17
64 kgBakelants
18
67 kgHegreberg
19
72 kgKvist
22
68 kgPrades
35
56 kgde la Parte
43
64 kgvan Amerongen
51
70 kgPeyroton-Dartet
52
65 kgTurgot
60
73 kgGhyselinck
62
74 kg
1
65 kgHerrada
2
65 kgKreder
4
67 kgCazaux
8
59 kgLebas
9
65 kgQuéméneur
12
67 kgGroenendaal
14
66 kgDockx
17
64 kgBakelants
18
67 kgHegreberg
19
72 kgKvist
22
68 kgPrades
35
56 kgde la Parte
43
64 kgvan Amerongen
51
70 kgPeyroton-Dartet
52
65 kgTurgot
60
73 kgGhyselinck
62
74 kg
Weight (KG) →
Result →
74
56
1
62
# | Rider | Weight (KG) |
---|---|---|
1 | PARDILLA Sergio | 65 |
2 | HERRADA José | 65 |
4 | KREDER Michel | 67 |
8 | CAZAUX Pierre | 59 |
9 | LEBAS Thomas | 65 |
12 | QUÉMÉNEUR Perrig | 67 |
14 | GROENENDAAL Richard | 66 |
17 | DOCKX Gert | 64 |
18 | BAKELANTS Jan | 67 |
19 | HEGREBERG Morten | 72 |
22 | KVIST Thomas Vedel | 68 |
35 | PRADES Benjamín | 56 |
43 | DE LA PARTE Víctor | 64 |
51 | VAN AMERONGEN Thijs | 70 |
52 | PEYROTON-DARTET Thomas | 65 |
60 | TURGOT Sébastien | 73 |
62 | GHYSELINCK Jan | 74 |