Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Didier
3
68 kgde Jonge
5
65 kgBakelants
7
67 kgRuijgh
8
64 kgDockx
9
64 kgGhyselinck
10
74 kgJeandesboz
20
69 kgCourteille
25
62 kgGlasner
28
72 kgTopchanyuk
30
65 kgPrades
32
56 kgCousin
36
74 kgvan Amerongen
39
70 kgNauleau
44
67 kgSoula
67
68 kgLloyd
79
70 kgDe Schrooder
86
61 kgHegreberg
93
72 kg
3
68 kgde Jonge
5
65 kgBakelants
7
67 kgRuijgh
8
64 kgDockx
9
64 kgGhyselinck
10
74 kgJeandesboz
20
69 kgCourteille
25
62 kgGlasner
28
72 kgTopchanyuk
30
65 kgPrades
32
56 kgCousin
36
74 kgvan Amerongen
39
70 kgNauleau
44
67 kgSoula
67
68 kgLloyd
79
70 kgDe Schrooder
86
61 kgHegreberg
93
72 kg
Weight (KG) →
Result →
74
56
3
93
# | Rider | Weight (KG) |
---|---|---|
3 | DIDIER Laurent | 68 |
5 | DE JONGE Maarten | 65 |
7 | BAKELANTS Jan | 67 |
8 | RUIJGH Rob | 64 |
9 | DOCKX Gert | 64 |
10 | GHYSELINCK Jan | 74 |
20 | JEANDESBOZ Fabrice | 69 |
25 | COURTEILLE Arnaud | 62 |
28 | GLASNER Björn | 72 |
30 | TOPCHANYUK Artem | 65 |
32 | PRADES Benjamín | 56 |
36 | COUSIN Jérôme | 74 |
39 | VAN AMERONGEN Thijs | 70 |
44 | NAULEAU Bryan | 67 |
67 | SOULA Guillaume | 68 |
79 | LLOYD Daniel | 70 |
86 | DE SCHROODER Benny | 61 |
93 | HEGREBERG Morten | 72 |