Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 48
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Prades
4
56 kgDidier
5
68 kgBakelants
6
67 kgDockx
7
64 kgde Jonge
8
65 kgCourteille
10
62 kgGlasner
12
72 kgRuijgh
22
64 kgGhyselinck
27
74 kgTopchanyuk
31
65 kgJeandesboz
33
69 kgLloyd
35
70 kgvan Amerongen
40
70 kgCousin
47
74 kgHegreberg
51
72 kgDe Schrooder
72
61 kgSoula
78
68 kgNauleau
82
67 kg
4
56 kgDidier
5
68 kgBakelants
6
67 kgDockx
7
64 kgde Jonge
8
65 kgCourteille
10
62 kgGlasner
12
72 kgRuijgh
22
64 kgGhyselinck
27
74 kgTopchanyuk
31
65 kgJeandesboz
33
69 kgLloyd
35
70 kgvan Amerongen
40
70 kgCousin
47
74 kgHegreberg
51
72 kgDe Schrooder
72
61 kgSoula
78
68 kgNauleau
82
67 kg
Weight (KG) →
Result →
74
56
4
82
# | Rider | Weight (KG) |
---|---|---|
4 | PRADES Benjamín | 56 |
5 | DIDIER Laurent | 68 |
6 | BAKELANTS Jan | 67 |
7 | DOCKX Gert | 64 |
8 | DE JONGE Maarten | 65 |
10 | COURTEILLE Arnaud | 62 |
12 | GLASNER Björn | 72 |
22 | RUIJGH Rob | 64 |
27 | GHYSELINCK Jan | 74 |
31 | TOPCHANYUK Artem | 65 |
33 | JEANDESBOZ Fabrice | 69 |
35 | LLOYD Daniel | 70 |
40 | VAN AMERONGEN Thijs | 70 |
47 | COUSIN Jérôme | 74 |
51 | HEGREBERG Morten | 72 |
72 | DE SCHROODER Benny | 61 |
78 | SOULA Guillaume | 68 |
82 | NAULEAU Bryan | 67 |