Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 18
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Bakelants
4
67 kgde Jonge
5
65 kgRuijgh
7
64 kgDockx
8
64 kgDidier
12
68 kgGhyselinck
19
74 kgTopchanyuk
20
65 kgJeandesboz
23
69 kgGlasner
29
72 kgPrades
33
56 kgCourteille
39
62 kgLloyd
41
70 kgCousin
42
74 kgvan Amerongen
46
70 kgHegreberg
50
72 kgNauleau
66
67 kgDe Schrooder
69
61 kgSoula
70
68 kg
4
67 kgde Jonge
5
65 kgRuijgh
7
64 kgDockx
8
64 kgDidier
12
68 kgGhyselinck
19
74 kgTopchanyuk
20
65 kgJeandesboz
23
69 kgGlasner
29
72 kgPrades
33
56 kgCourteille
39
62 kgLloyd
41
70 kgCousin
42
74 kgvan Amerongen
46
70 kgHegreberg
50
72 kgNauleau
66
67 kgDe Schrooder
69
61 kgSoula
70
68 kg
Weight (KG) →
Result →
74
56
4
70
# | Rider | Weight (KG) |
---|---|---|
4 | BAKELANTS Jan | 67 |
5 | DE JONGE Maarten | 65 |
7 | RUIJGH Rob | 64 |
8 | DOCKX Gert | 64 |
12 | DIDIER Laurent | 68 |
19 | GHYSELINCK Jan | 74 |
20 | TOPCHANYUK Artem | 65 |
23 | JEANDESBOZ Fabrice | 69 |
29 | GLASNER Björn | 72 |
33 | PRADES Benjamín | 56 |
39 | COURTEILLE Arnaud | 62 |
41 | LLOYD Daniel | 70 |
42 | COUSIN Jérôme | 74 |
46 | VAN AMERONGEN Thijs | 70 |
50 | HEGREBERG Morten | 72 |
66 | NAULEAU Bryan | 67 |
69 | DE SCHROODER Benny | 61 |
70 | SOULA Guillaume | 68 |