Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 140
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Reza
2
71 kgVermote
3
74 kgGhyselinck
4
74 kgRoberts
6
71 kgHurel
11
66 kgPatanchon
17
69 kgEijssen
23
60 kgde Jonge
31
65 kgVervecken
39
78 kgGottfried
40
60 kgEdet
42
60 kgPedraza
44
58 kgLietaer
45
70 kgArmée
57
72 kgTorrent
59
71 kgPrades
66
63 kgWetterhall
71
70 kgTopchanyuk
75
65 kgDuarte
81
55 kgBulgaç
86
71 kgVandyck
94
64 kgGlasner
98
72 kgChalapud
99
63 kg
2
71 kgVermote
3
74 kgGhyselinck
4
74 kgRoberts
6
71 kgHurel
11
66 kgPatanchon
17
69 kgEijssen
23
60 kgde Jonge
31
65 kgVervecken
39
78 kgGottfried
40
60 kgEdet
42
60 kgPedraza
44
58 kgLietaer
45
70 kgArmée
57
72 kgTorrent
59
71 kgPrades
66
63 kgWetterhall
71
70 kgTopchanyuk
75
65 kgDuarte
81
55 kgBulgaç
86
71 kgVandyck
94
64 kgGlasner
98
72 kgChalapud
99
63 kg
Weight (KG) →
Result →
78
55
2
99
# | Rider | Weight (KG) |
---|---|---|
2 | REZA Kévin | 71 |
3 | VERMOTE Julien | 74 |
4 | GHYSELINCK Jan | 74 |
6 | ROBERTS Luke | 71 |
11 | HUREL Tony | 66 |
17 | PATANCHON Fabien | 69 |
23 | EIJSSEN Yannick | 60 |
31 | DE JONGE Maarten | 65 |
39 | VERVECKEN Erwin | 78 |
40 | GOTTFRIED Alexander | 60 |
42 | EDET Nicolas | 60 |
44 | PEDRAZA Wálter Fernando | 58 |
45 | LIETAER Eliot | 70 |
57 | ARMÉE Sander | 72 |
59 | TORRENT Carlos | 71 |
66 | PRADES Eduard | 63 |
71 | WETTERHALL Alexander | 70 |
75 | TOPCHANYUK Artem | 65 |
81 | DUARTE Fabio | 55 |
86 | BULGAÇ Brian | 71 |
94 | VANDYCK Niels | 64 |
98 | GLASNER Björn | 72 |
99 | CHALAPUD Robinson | 63 |