Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 91
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Duarte
1
55 kgde Jonge
2
65 kgRoberts
7
71 kgGlasner
10
72 kgEijssen
13
60 kgPedraza
15
58 kgArmée
16
72 kgChalapud
18
63 kgPatanchon
24
69 kgVandyck
30
64 kgVermote
34
74 kgGhyselinck
38
74 kgEdet
41
60 kgGottfried
47
60 kgLietaer
60
70 kgTopchanyuk
65
65 kgWetterhall
67
70 kgReza
70
71 kgTorrent
85
71 kgPrades
87
63 kgBulgaç
91
71 kgVervecken
94
78 kg
1
55 kgde Jonge
2
65 kgRoberts
7
71 kgGlasner
10
72 kgEijssen
13
60 kgPedraza
15
58 kgArmée
16
72 kgChalapud
18
63 kgPatanchon
24
69 kgVandyck
30
64 kgVermote
34
74 kgGhyselinck
38
74 kgEdet
41
60 kgGottfried
47
60 kgLietaer
60
70 kgTopchanyuk
65
65 kgWetterhall
67
70 kgReza
70
71 kgTorrent
85
71 kgPrades
87
63 kgBulgaç
91
71 kgVervecken
94
78 kg
Weight (KG) →
Result →
78
55
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | DUARTE Fabio | 55 |
2 | DE JONGE Maarten | 65 |
7 | ROBERTS Luke | 71 |
10 | GLASNER Björn | 72 |
13 | EIJSSEN Yannick | 60 |
15 | PEDRAZA Wálter Fernando | 58 |
16 | ARMÉE Sander | 72 |
18 | CHALAPUD Robinson | 63 |
24 | PATANCHON Fabien | 69 |
30 | VANDYCK Niels | 64 |
34 | VERMOTE Julien | 74 |
38 | GHYSELINCK Jan | 74 |
41 | EDET Nicolas | 60 |
47 | GOTTFRIED Alexander | 60 |
60 | LIETAER Eliot | 70 |
65 | TOPCHANYUK Artem | 65 |
67 | WETTERHALL Alexander | 70 |
70 | REZA Kévin | 71 |
85 | TORRENT Carlos | 71 |
87 | PRADES Eduard | 63 |
91 | BULGAÇ Brian | 71 |
94 | VERVECKEN Erwin | 78 |