Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Andriato
1
67 kgRamos
4
65 kgCaldeira
6
76 kgPanizo
7
72 kgMonsalve
9
62 kgEyob
10
61 kgZangerle
11
63 kgRibeiro
13
59 kgCésar Veloso
15
69 kgSevilla
16
62 kgThill
20
73 kgVilela
27
59 kgAffonso
29
63 kgWestmattelmann
32
75 kgOkubamariam
34
60 kgFernández
35
69 kgFonzi
39
63 kgBraun
44
76 kgGil Martinez
46
60 kgCecchinel
51
69 kgTedeschi
52
69 kg
1
67 kgRamos
4
65 kgCaldeira
6
76 kgPanizo
7
72 kgMonsalve
9
62 kgEyob
10
61 kgZangerle
11
63 kgRibeiro
13
59 kgCésar Veloso
15
69 kgSevilla
16
62 kgThill
20
73 kgVilela
27
59 kgAffonso
29
63 kgWestmattelmann
32
75 kgOkubamariam
34
60 kgFernández
35
69 kgFonzi
39
63 kgBraun
44
76 kgGil Martinez
46
60 kgCecchinel
51
69 kgTedeschi
52
69 kg
Weight (KG) →
Result →
76
59
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | ANDRIATO Rafael | 67 |
4 | RAMOS Kléber | 65 |
6 | CALDEIRA Samuel José | 76 |
7 | PANIZO Gregolry | 72 |
9 | MONSALVE Yonathan | 62 |
10 | EYOB Metkel | 61 |
11 | ZANGERLE Joel | 63 |
13 | RIBEIRO Nuno | 59 |
15 | CÉSAR VELOSO Gustavo | 69 |
16 | SEVILLA Óscar | 62 |
20 | THILL Tom | 73 |
27 | VILELA Ricardo | 59 |
29 | AFFONSO Murilo | 63 |
32 | WESTMATTELMANN Daniel | 75 |
34 | OKUBAMARIAM Tesfom | 60 |
35 | FERNÁNDEZ Delio | 69 |
39 | FONZI Giuseppe | 63 |
44 | BRAUN Julian | 76 |
46 | GIL MARTINEZ Tomas Aurelio | 60 |
51 | CECCHINEL Giorgio | 69 |
52 | TEDESCHI Mirko | 69 |