Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
McEwen
1
67 kgRogers
2
74 kgKoerts
3
78 kgO'Grady
4
73 kgSacchi
5
68 kgHoffman
6
80 kgD'Hollander
7
74 kgNardello
8
74 kgPaolini
9
66 kgEvans
10
64 kgTafi
11
73 kgHulsmans
12
75 kgLoder
13
62 kgDean
18
72 kgHondo
19
73 kgCooke
22
75 kgKirsipuu
23
80 kgBotcharov
24
54 kgWesemann
25
72 kgVan de Wouwer
26
66 kgAstarloza
27
72 kg
1
67 kgRogers
2
74 kgKoerts
3
78 kgO'Grady
4
73 kgSacchi
5
68 kgHoffman
6
80 kgD'Hollander
7
74 kgNardello
8
74 kgPaolini
9
66 kgEvans
10
64 kgTafi
11
73 kgHulsmans
12
75 kgLoder
13
62 kgDean
18
72 kgHondo
19
73 kgCooke
22
75 kgKirsipuu
23
80 kgBotcharov
24
54 kgWesemann
25
72 kgVan de Wouwer
26
66 kgAstarloza
27
72 kg
Weight (KG) →
Result →
80
54
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | MCEWEN Robbie | 67 |
2 | ROGERS Michael | 74 |
3 | KOERTS Jans | 78 |
4 | O'GRADY Stuart | 73 |
5 | SACCHI Fabio | 68 |
6 | HOFFMAN Tristan | 80 |
7 | D'HOLLANDER Glenn | 74 |
8 | NARDELLO Daniele | 74 |
9 | PAOLINI Luca | 66 |
10 | EVANS Cadel | 64 |
11 | TAFI Andrea | 73 |
12 | HULSMANS Kevin | 75 |
13 | LODER Thierry | 62 |
18 | DEAN Julian | 72 |
19 | HONDO Danilo | 73 |
22 | COOKE Baden | 75 |
23 | KIRSIPUU Jaan | 80 |
24 | BOTCHAROV Alexandre | 54 |
25 | WESEMANN Steffen | 72 |
26 | VAN DE WOUWER Kurt | 66 |
27 | ASTARLOZA Mikel | 72 |