Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Tafi
1
73 kgCooke
2
75 kgKirsipuu
3
80 kgCaruso
4
60 kgSacchi
5
68 kgBrown
6
76 kgWilson
9
72 kgO'Grady
10
73 kgFlickinger
11
78 kgPortal
12
70 kgWesemann
14
72 kgFlorencio
15
59 kgNardello
16
74 kgScanlon
17
79 kgHervé
18
60 kgPaolini
19
66 kgPütsep
20
69 kgVoigt
21
76 kgRoberts
23
71 kg
1
73 kgCooke
2
75 kgKirsipuu
3
80 kgCaruso
4
60 kgSacchi
5
68 kgBrown
6
76 kgWilson
9
72 kgO'Grady
10
73 kgFlickinger
11
78 kgPortal
12
70 kgWesemann
14
72 kgFlorencio
15
59 kgNardello
16
74 kgScanlon
17
79 kgHervé
18
60 kgPaolini
19
66 kgPütsep
20
69 kgVoigt
21
76 kgRoberts
23
71 kg
Weight (KG) →
Result →
80
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | TAFI Andrea | 73 |
2 | COOKE Baden | 75 |
3 | KIRSIPUU Jaan | 80 |
4 | CARUSO Giampaolo | 60 |
5 | SACCHI Fabio | 68 |
6 | BROWN Graeme Allen | 76 |
9 | WILSON Matthew | 72 |
10 | O'GRADY Stuart | 73 |
11 | FLICKINGER Andy | 78 |
12 | PORTAL Nicolas | 70 |
14 | WESEMANN Steffen | 72 |
15 | FLORENCIO Xavier | 59 |
16 | NARDELLO Daniele | 74 |
17 | SCANLON Mark | 79 |
18 | HERVÉ Cédric | 60 |
19 | PAOLINI Luca | 66 |
20 | PÜTSEP Erki | 69 |
21 | VOIGT Jens | 76 |
23 | ROBERTS Luke | 71 |