Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
McEwen
1
67 kgClerc
2
71 kgCooke
4
75 kgJonker
5
69 kgGilbert
6
75 kgRenshaw
8
74 kgDay
10
68 kgPütsep
11
69 kgGiunti
12
62 kgPoilvet
13
71 kgBates
15
61 kgFischer
18
65 kgGerrans
19
62 kgD'Hollander
20
74 kgDavis
21
73 kgKaggestad
22
66 kgEisel
23
74 kgLequatre
24
64 kgRoberts
26
71 kgAmorison
27
70 kgEngels
28
64 kgBrown
29
76 kg
1
67 kgClerc
2
71 kgCooke
4
75 kgJonker
5
69 kgGilbert
6
75 kgRenshaw
8
74 kgDay
10
68 kgPütsep
11
69 kgGiunti
12
62 kgPoilvet
13
71 kgBates
15
61 kgFischer
18
65 kgGerrans
19
62 kgD'Hollander
20
74 kgDavis
21
73 kgKaggestad
22
66 kgEisel
23
74 kgLequatre
24
64 kgRoberts
26
71 kgAmorison
27
70 kgEngels
28
64 kgBrown
29
76 kg
Weight (KG) →
Result →
76
61
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | MCEWEN Robbie | 67 |
2 | CLERC Aurélien | 71 |
4 | COOKE Baden | 75 |
5 | JONKER Patrick | 69 |
6 | GILBERT Philippe | 75 |
8 | RENSHAW Mark | 74 |
10 | DAY Benjamin | 68 |
11 | PÜTSEP Erki | 69 |
12 | GIUNTI Massimo | 62 |
13 | POILVET Benoît | 71 |
15 | BATES Gene | 61 |
18 | FISCHER Murilo Antonio | 65 |
19 | GERRANS Simon | 62 |
20 | D'HOLLANDER Glenn | 74 |
21 | DAVIS Allan | 73 |
22 | KAGGESTAD Mads | 66 |
23 | EISEL Bernhard | 74 |
24 | LEQUATRE Geoffroy | 64 |
26 | ROBERTS Luke | 71 |
27 | AMORISON Frédéric | 70 |
28 | ENGELS Addy | 64 |
29 | BROWN Graeme Allen | 76 |