Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Davis
1
73 kgBecke
3
75 kgGerrans
4
62 kgBarredo
5
61 kgMartias
7
71 kgMcEwen
8
67 kgChadwick
9
75 kgPaolini
10
66 kgBotcharov
11
54 kgSánchez
12
73 kgBates
13
61 kgHayman
15
78 kgEvans
16
64 kgCadamuro
17
78 kgAerts
19
68 kgRenshaw
20
74 kgBodrogi
21
79 kgGoss
22
70 kgClarke
23
68 kg
1
73 kgBecke
3
75 kgGerrans
4
62 kgBarredo
5
61 kgMartias
7
71 kgMcEwen
8
67 kgChadwick
9
75 kgPaolini
10
66 kgBotcharov
11
54 kgSánchez
12
73 kgBates
13
61 kgHayman
15
78 kgEvans
16
64 kgCadamuro
17
78 kgAerts
19
68 kgRenshaw
20
74 kgBodrogi
21
79 kgGoss
22
70 kgClarke
23
68 kg
Weight (KG) →
Result →
79
54
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | DAVIS Allan | 73 |
3 | BECKE Daniel | 75 |
4 | GERRANS Simon | 62 |
5 | BARREDO Carlos | 61 |
7 | MARTIAS Rony | 71 |
8 | MCEWEN Robbie | 67 |
9 | CHADWICK Glen Alan | 75 |
10 | PAOLINI Luca | 66 |
11 | BOTCHAROV Alexandre | 54 |
12 | SÁNCHEZ Luis León | 73 |
13 | BATES Gene | 61 |
15 | HAYMAN Mathew | 78 |
16 | EVANS Cadel | 64 |
17 | CADAMURO Simone | 78 |
19 | AERTS Mario | 68 |
20 | RENSHAW Mark | 74 |
21 | BODROGI László | 79 |
22 | GOSS Matthew | 70 |
23 | CLARKE Jonathan | 68 |