Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Pauwels
1
65 kgDumoulin
2
57 kgCheula
3
62 kgBreschel
4
70 kgBlackgrove
5
65 kgLarsson
6
77 kgMercado
7
56 kgBotcharov
9
54 kgLagutin
10
68 kgD'Hollander
11
74 kgLongo Borghini
12
76 kgClarke
13
70 kgJufré
14
65 kgBrochard
15
68 kgGerrans
16
62 kgGuidi
19
73 kgSiedler
20
75 kgTalabardon
21
67 kgEichler
22
78 kgGoss
23
70 kgDean
24
72 kgKrivtsov
25
72 kgSteurs
26
77 kg
1
65 kgDumoulin
2
57 kgCheula
3
62 kgBreschel
4
70 kgBlackgrove
5
65 kgLarsson
6
77 kgMercado
7
56 kgBotcharov
9
54 kgLagutin
10
68 kgD'Hollander
11
74 kgLongo Borghini
12
76 kgClarke
13
70 kgJufré
14
65 kgBrochard
15
68 kgGerrans
16
62 kgGuidi
19
73 kgSiedler
20
75 kgTalabardon
21
67 kgEichler
22
78 kgGoss
23
70 kgDean
24
72 kgKrivtsov
25
72 kgSteurs
26
77 kg
Weight (KG) →
Result →
78
54
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | PAUWELS Serge | 65 |
2 | DUMOULIN Samuel | 57 |
3 | CHEULA Giampaolo | 62 |
4 | BRESCHEL Matti | 70 |
5 | BLACKGROVE Heath | 65 |
6 | LARSSON Gustav Erik | 77 |
7 | MERCADO Juan Miguel | 56 |
9 | BOTCHAROV Alexandre | 54 |
10 | LAGUTIN Sergey | 68 |
11 | D'HOLLANDER Glenn | 74 |
12 | LONGO BORGHINI Paolo | 76 |
13 | CLARKE Hilton | 70 |
14 | JUFRÉ Josep | 65 |
15 | BROCHARD Laurent | 68 |
16 | GERRANS Simon | 62 |
19 | GUIDI Fabrizio | 73 |
20 | SIEDLER Sebastian | 75 |
21 | TALABARDON Yannick | 67 |
22 | EICHLER Markus | 78 |
23 | GOSS Matthew | 70 |
24 | DEAN Julian | 72 |
25 | KRIVTSOV Yuriy | 72 |
26 | STEURS Geert | 77 |