Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Brochard
1
68 kgElmiger
2
73 kgMenzies
5
86 kgRoberts
6
71 kgBates
7
61 kgSulzberger
8
65 kgDekkers
9
72 kgGoss
10
70 kgCaethoven
11
67 kgCooke
12
75 kgMcEwen
13
67 kgDavis
14
73 kgLagutin
16
68 kgRenshaw
17
74 kgBak
18
76 kgO'Grady
19
73 kgJufré
20
65 kgLaurent
21
72 kgBotcharov
22
54 kgMercado
23
56 kgCheula
24
62 kgAvery
26
90 kgWilson
27
72 kg
1
68 kgElmiger
2
73 kgMenzies
5
86 kgRoberts
6
71 kgBates
7
61 kgSulzberger
8
65 kgDekkers
9
72 kgGoss
10
70 kgCaethoven
11
67 kgCooke
12
75 kgMcEwen
13
67 kgDavis
14
73 kgLagutin
16
68 kgRenshaw
17
74 kgBak
18
76 kgO'Grady
19
73 kgJufré
20
65 kgLaurent
21
72 kgBotcharov
22
54 kgMercado
23
56 kgCheula
24
62 kgAvery
26
90 kgWilson
27
72 kg
Weight (KG) →
Result →
90
54
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | BROCHARD Laurent | 68 |
2 | ELMIGER Martin | 73 |
5 | MENZIES Karl | 86 |
6 | ROBERTS Luke | 71 |
7 | BATES Gene | 61 |
8 | SULZBERGER Wesley | 65 |
9 | DEKKERS Hans | 72 |
10 | GOSS Matthew | 70 |
11 | CAETHOVEN Steven | 67 |
12 | COOKE Baden | 75 |
13 | MCEWEN Robbie | 67 |
14 | DAVIS Allan | 73 |
16 | LAGUTIN Sergey | 68 |
17 | RENSHAW Mark | 74 |
18 | BAK Lars Ytting | 76 |
19 | O'GRADY Stuart | 73 |
20 | JUFRÉ Josep | 65 |
21 | LAURENT Christophe | 72 |
22 | BOTCHAROV Alexandre | 54 |
23 | MERCADO Juan Miguel | 56 |
24 | CHEULA Giampaolo | 62 |
26 | AVERY Clinton | 90 |
27 | WILSON Matthew | 72 |