Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Brochard
1
68 kgElmiger
4
73 kgRoberts
5
71 kgBates
6
61 kgSulzberger
7
65 kgDekkers
8
72 kgMenzies
9
86 kgCaethoven
10
67 kgCooke
11
75 kgGoss
12
70 kgLagutin
14
68 kgBak
15
76 kgO'Grady
16
73 kgJufré
17
65 kgLaurent
18
72 kgMercado
19
56 kgCheula
20
62 kgAvery
22
90 kgWilson
23
72 kg
1
68 kgElmiger
4
73 kgRoberts
5
71 kgBates
6
61 kgSulzberger
7
65 kgDekkers
8
72 kgMenzies
9
86 kgCaethoven
10
67 kgCooke
11
75 kgGoss
12
70 kgLagutin
14
68 kgBak
15
76 kgO'Grady
16
73 kgJufré
17
65 kgLaurent
18
72 kgMercado
19
56 kgCheula
20
62 kgAvery
22
90 kgWilson
23
72 kg
Weight (KG) →
Result →
90
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BROCHARD Laurent | 68 |
4 | ELMIGER Martin | 73 |
5 | ROBERTS Luke | 71 |
6 | BATES Gene | 61 |
7 | SULZBERGER Wesley | 65 |
8 | DEKKERS Hans | 72 |
9 | MENZIES Karl | 86 |
10 | CAETHOVEN Steven | 67 |
11 | COOKE Baden | 75 |
12 | GOSS Matthew | 70 |
14 | LAGUTIN Sergey | 68 |
15 | BAK Lars Ytting | 76 |
16 | O'GRADY Stuart | 73 |
17 | JUFRÉ Josep | 65 |
18 | LAURENT Christophe | 72 |
19 | MERCADO Juan Miguel | 56 |
20 | CHEULA Giampaolo | 62 |
22 | AVERY Clinton | 90 |
23 | WILSON Matthew | 72 |