Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Renshaw
1
74 kgDavis
2
73 kgGreipel
3
80 kgDelage
4
70 kgBuffaz
5
64 kgOffredo
6
69 kgRojas
8
70 kgBrown
9
76 kgCarlström
10
70 kgChampion
11
70 kgFörster
12
83 kgHayman
13
78 kgSánchez
14
73 kgSulzberger
15
65 kgPoulhiès
16
75 kgPorte
17
62 kgGilbert
18
75 kgAstarloza
19
72 kg
1
74 kgDavis
2
73 kgGreipel
3
80 kgDelage
4
70 kgBuffaz
5
64 kgOffredo
6
69 kgRojas
8
70 kgBrown
9
76 kgCarlström
10
70 kgChampion
11
70 kgFörster
12
83 kgHayman
13
78 kgSánchez
14
73 kgSulzberger
15
65 kgPoulhiès
16
75 kgPorte
17
62 kgGilbert
18
75 kgAstarloza
19
72 kg
Weight (KG) →
Result →
83
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | RENSHAW Mark | 74 |
2 | DAVIS Allan | 73 |
3 | GREIPEL André | 80 |
4 | DELAGE Mickaël | 70 |
5 | BUFFAZ Mickaël | 64 |
6 | OFFREDO Yoann | 69 |
8 | ROJAS José Joaquín | 70 |
9 | BROWN Graeme Allen | 76 |
10 | CARLSTRÖM Kjell | 70 |
11 | CHAMPION Dimitri | 70 |
12 | FÖRSTER Robert | 83 |
13 | HAYMAN Mathew | 78 |
14 | SÁNCHEZ Luis León | 73 |
15 | SULZBERGER Wesley | 65 |
16 | POULHIÈS Stéphane | 75 |
17 | PORTE Richie | 62 |
18 | GILBERT Philippe | 75 |
19 | ASTARLOZA Mikel | 72 |