Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 19
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Rojas
1
70 kgDelage
2
70 kgPorte
3
62 kgJacobs
4
68 kgDurán
6
70 kgSantaromita
7
58 kgPerget
8
64 kgViganò
9
67 kgSeeldraeyers
10
60 kgOffredo
11
69 kgHaussler
12
74 kgGrabovskyy
13
69 kgHuguet
15
66 kgClarke
16
63 kgLafuente
18
60 kgRolland
19
70 kgGudsell
20
77 kgGoss
21
70 kgGavazzi
22
65 kgWestphal
23
75 kgAramendia
24
72 kgSulzberger
25
65 kgPoulhiès
26
75 kg
1
70 kgDelage
2
70 kgPorte
3
62 kgJacobs
4
68 kgDurán
6
70 kgSantaromita
7
58 kgPerget
8
64 kgViganò
9
67 kgSeeldraeyers
10
60 kgOffredo
11
69 kgHaussler
12
74 kgGrabovskyy
13
69 kgHuguet
15
66 kgClarke
16
63 kgLafuente
18
60 kgRolland
19
70 kgGudsell
20
77 kgGoss
21
70 kgGavazzi
22
65 kgWestphal
23
75 kgAramendia
24
72 kgSulzberger
25
65 kgPoulhiès
26
75 kg
Weight (KG) →
Result →
77
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | ROJAS José Joaquín | 70 |
2 | DELAGE Mickaël | 70 |
3 | PORTE Richie | 62 |
4 | JACOBS Pieter | 68 |
6 | DURÁN Arkaitz | 70 |
7 | SANTAROMITA Ivan | 58 |
8 | PERGET Mathieu | 64 |
9 | VIGANÒ Davide | 67 |
10 | SEELDRAEYERS Kevin | 60 |
11 | OFFREDO Yoann | 69 |
12 | HAUSSLER Heinrich | 74 |
13 | GRABOVSKYY Dmytro | 69 |
15 | HUGUET Yann | 66 |
16 | CLARKE Simon | 63 |
18 | LAFUENTE Andoni | 60 |
19 | ROLLAND Pierre | 70 |
20 | GUDSELL Timothy | 77 |
21 | GOSS Matthew | 70 |
22 | GAVAZZI Francesco | 65 |
23 | WESTPHAL Carlo | 75 |
24 | ARAMENDIA Javier | 72 |
25 | SULZBERGER Wesley | 65 |
26 | POULHIÈS Stéphane | 75 |