Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Greipel
1
80 kgKohler
2
69 kgDelage
3
70 kgKadri
4
66 kgCardoso
5
70 kgIzagirre
7
66 kgKroon
8
67 kgHenderson
9
75 kgSteegmans
10
82 kgValverde
11
61 kgMcEwen
12
67 kgRoelandts
13
78 kgEvans
14
64 kgRoe
16
66 kgKaisen
17
82 kgClarke
18
63 kgGrivko
19
70 kgBobridge
20
65 kg
1
80 kgKohler
2
69 kgDelage
3
70 kgKadri
4
66 kgCardoso
5
70 kgIzagirre
7
66 kgKroon
8
67 kgHenderson
9
75 kgSteegmans
10
82 kgValverde
11
61 kgMcEwen
12
67 kgRoelandts
13
78 kgEvans
14
64 kgRoe
16
66 kgKaisen
17
82 kgClarke
18
63 kgGrivko
19
70 kgBobridge
20
65 kg
Weight (KG) →
Result →
82
61
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | GREIPEL André | 80 |
2 | KOHLER Martin | 69 |
3 | DELAGE Mickaël | 70 |
4 | KADRI Blel | 66 |
5 | CARDOSO Manuel Antonio Leal | 70 |
7 | IZAGIRRE Gorka | 66 |
8 | KROON Karsten | 67 |
9 | HENDERSON Gregory | 75 |
10 | STEEGMANS Gert | 82 |
11 | VALVERDE Alejandro | 61 |
12 | MCEWEN Robbie | 67 |
13 | ROELANDTS Jürgen | 78 |
14 | EVANS Cadel | 64 |
16 | ROE Timothy | 66 |
17 | KAISEN Olivier | 82 |
18 | CLARKE Simon | 63 |
19 | GRIVKO Andrey | 70 |
20 | BOBRIDGE Jack | 65 |