Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Greipel
1
80 kgKohler
3
69 kgDelage
4
70 kgMcEwen
5
67 kgRohregger
6
63 kgKadri
7
66 kgCardoso
8
70 kgIzagirre
9
66 kgRavard
10
62 kgKroon
11
67 kgHenderson
12
75 kgSteegmans
13
82 kgValverde
14
61 kgBrown
15
76 kgRoelandts
16
78 kgEvans
17
64 kgRoe
19
66 kgKaisen
20
82 kgClarke
21
63 kgGrivko
22
70 kgFrei
23
71 kgBobridge
24
65 kg
1
80 kgKohler
3
69 kgDelage
4
70 kgMcEwen
5
67 kgRohregger
6
63 kgKadri
7
66 kgCardoso
8
70 kgIzagirre
9
66 kgRavard
10
62 kgKroon
11
67 kgHenderson
12
75 kgSteegmans
13
82 kgValverde
14
61 kgBrown
15
76 kgRoelandts
16
78 kgEvans
17
64 kgRoe
19
66 kgKaisen
20
82 kgClarke
21
63 kgGrivko
22
70 kgFrei
23
71 kgBobridge
24
65 kg
Weight (KG) →
Result →
82
61
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | GREIPEL André | 80 |
3 | KOHLER Martin | 69 |
4 | DELAGE Mickaël | 70 |
5 | MCEWEN Robbie | 67 |
6 | ROHREGGER Thomas | 63 |
7 | KADRI Blel | 66 |
8 | CARDOSO Manuel Antonio Leal | 70 |
9 | IZAGIRRE Gorka | 66 |
10 | RAVARD Anthony | 62 |
11 | KROON Karsten | 67 |
12 | HENDERSON Gregory | 75 |
13 | STEEGMANS Gert | 82 |
14 | VALVERDE Alejandro | 61 |
15 | BROWN Graeme Allen | 76 |
16 | ROELANDTS Jürgen | 78 |
17 | EVANS Cadel | 64 |
19 | ROE Timothy | 66 |
20 | KAISEN Olivier | 82 |
21 | CLARKE Simon | 63 |
22 | GRIVKO Andrey | 70 |
23 | FREI Thomas | 71 |
24 | BOBRIDGE Jack | 65 |