Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
De Gendt
1
73 kgGoss
2
70 kgMcEwen
3
67 kgKuschynski
4
65 kgDocker
5
73 kgGreipel
6
80 kgMeyer
7
70 kgMatthews
8
72 kgSwift
9
69 kgTanner
10
70 kgPerget
11
64 kgZahner
12
73 kgMínguez
13
59 kgClarke
14
63 kgten Dam
15
67 kgKadri
16
66 kgKrivtsov
17
72 kgBrown
18
76 kgVentoso
19
75 kgPasamontes
20
72 kgDurbridge
21
78 kg
1
73 kgGoss
2
70 kgMcEwen
3
67 kgKuschynski
4
65 kgDocker
5
73 kgGreipel
6
80 kgMeyer
7
70 kgMatthews
8
72 kgSwift
9
69 kgTanner
10
70 kgPerget
11
64 kgZahner
12
73 kgMínguez
13
59 kgClarke
14
63 kgten Dam
15
67 kgKadri
16
66 kgKrivtsov
17
72 kgBrown
18
76 kgVentoso
19
75 kgPasamontes
20
72 kgDurbridge
21
78 kg
Weight (KG) →
Result →
80
59
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Thomas | 73 |
2 | GOSS Matthew | 70 |
3 | MCEWEN Robbie | 67 |
4 | KUSCHYNSKI Aleksandr | 65 |
5 | DOCKER Mitchell | 73 |
6 | GREIPEL André | 80 |
7 | MEYER Cameron | 70 |
8 | MATTHEWS Michael | 72 |
9 | SWIFT Ben | 69 |
10 | TANNER David | 70 |
11 | PERGET Mathieu | 64 |
12 | ZAHNER Simon | 73 |
13 | MÍNGUEZ Miguel | 59 |
14 | CLARKE Simon | 63 |
15 | TEN DAM Laurens | 67 |
16 | KADRI Blel | 66 |
17 | KRIVTSOV Yuriy | 72 |
18 | BROWN Graeme Allen | 76 |
19 | VENTOSO Francisco José | 75 |
20 | PASAMONTES Luis | 72 |
21 | DURBRIDGE Luke | 78 |