Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Hansen
1
72 kgDomont
2
65 kgPorte
3
62 kgClarke
4
81 kgGerrans
5
62 kgEvans
6
64 kgVoigt
7
76 kgGesink
8
70 kgUlissi
9
63 kgIgnatiev
10
67 kgFlakemore
11
72 kgDidier
12
68 kgTrentin
13
74 kgvan Poppel
14
78 kgHaas
15
71 kgImpey
16
72 kgWurf
17
71 kgSutherland
18
75 kgBookwalter
19
70 kgRoelandts
20
78 kgClarke
21
63 kg
1
72 kgDomont
2
65 kgPorte
3
62 kgClarke
4
81 kgGerrans
5
62 kgEvans
6
64 kgVoigt
7
76 kgGesink
8
70 kgUlissi
9
63 kgIgnatiev
10
67 kgFlakemore
11
72 kgDidier
12
68 kgTrentin
13
74 kgvan Poppel
14
78 kgHaas
15
71 kgImpey
16
72 kgWurf
17
71 kgSutherland
18
75 kgBookwalter
19
70 kgRoelandts
20
78 kgClarke
21
63 kg
Weight (KG) →
Result →
81
62
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | HANSEN Adam | 72 |
2 | DOMONT Axel | 65 |
3 | PORTE Richie | 62 |
4 | CLARKE Will | 81 |
5 | GERRANS Simon | 62 |
6 | EVANS Cadel | 64 |
7 | VOIGT Jens | 76 |
8 | GESINK Robert | 70 |
9 | ULISSI Diego | 63 |
10 | IGNATIEV Mikhail | 67 |
11 | FLAKEMORE Campbell | 72 |
12 | DIDIER Laurent | 68 |
13 | TRENTIN Matteo | 74 |
14 | VAN POPPEL Boy | 78 |
15 | HAAS Nathan | 71 |
16 | IMPEY Daryl | 72 |
17 | WURF Cameron | 71 |
18 | SUTHERLAND Rory | 75 |
19 | BOOKWALTER Brent | 70 |
20 | ROELANDTS Jürgen | 78 |
21 | CLARKE Simon | 63 |