Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Gerrans
1
62 kgUlissi
2
63 kgGavazzi
3
65 kgEvans
4
64 kgGesink
5
70 kgClarke
6
81 kgGreipel
7
80 kgVon Hoff
8
70 kgGeschke
9
64 kgBouet
10
67 kgPorte
11
62 kgHermans
12
72 kgvan Poppel
13
78 kgFelline
15
68 kgValls
16
64 kgMoreno
17
63 kgImpey
18
72 kgFlakemore
19
72 kg
1
62 kgUlissi
2
63 kgGavazzi
3
65 kgEvans
4
64 kgGesink
5
70 kgClarke
6
81 kgGreipel
7
80 kgVon Hoff
8
70 kgGeschke
9
64 kgBouet
10
67 kgPorte
11
62 kgHermans
12
72 kgvan Poppel
13
78 kgFelline
15
68 kgValls
16
64 kgMoreno
17
63 kgImpey
18
72 kgFlakemore
19
72 kg
Weight (KG) →
Result →
81
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | GERRANS Simon | 62 |
2 | ULISSI Diego | 63 |
3 | GAVAZZI Francesco | 65 |
4 | EVANS Cadel | 64 |
5 | GESINK Robert | 70 |
6 | CLARKE Will | 81 |
7 | GREIPEL André | 80 |
8 | VON HOFF Steele | 70 |
9 | GESCHKE Simon | 64 |
10 | BOUET Maxime | 67 |
11 | PORTE Richie | 62 |
12 | HERMANS Ben | 72 |
13 | VAN POPPEL Boy | 78 |
15 | FELLINE Fabio | 68 |
16 | VALLS Rafael | 64 |
17 | MORENO Javier | 63 |
18 | IMPEY Daryl | 72 |
19 | FLAKEMORE Campbell | 72 |