Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Gerrans
1
62 kgUlissi
2
63 kgEvans
3
64 kgGesink
4
70 kgGavazzi
5
65 kgHermans
6
72 kgClarke
7
81 kgHaas
8
71 kgGreipel
9
80 kgImpey
10
72 kgVon Hoff
11
70 kgHansen
12
72 kgGeschke
13
64 kgBouet
14
67 kgSutherland
15
75 kgPorte
16
62 kgBookwalter
17
70 kgvan Poppel
18
78 kgMeyer
19
68 kgGrivko
21
70 kgFelline
22
68 kgMoreno
23
63 kgFlakemore
24
72 kgCousin
25
74 kg
1
62 kgUlissi
2
63 kgEvans
3
64 kgGesink
4
70 kgGavazzi
5
65 kgHermans
6
72 kgClarke
7
81 kgHaas
8
71 kgGreipel
9
80 kgImpey
10
72 kgVon Hoff
11
70 kgHansen
12
72 kgGeschke
13
64 kgBouet
14
67 kgSutherland
15
75 kgPorte
16
62 kgBookwalter
17
70 kgvan Poppel
18
78 kgMeyer
19
68 kgGrivko
21
70 kgFelline
22
68 kgMoreno
23
63 kgFlakemore
24
72 kgCousin
25
74 kg
Weight (KG) →
Result →
81
62
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | GERRANS Simon | 62 |
2 | ULISSI Diego | 63 |
3 | EVANS Cadel | 64 |
4 | GESINK Robert | 70 |
5 | GAVAZZI Francesco | 65 |
6 | HERMANS Ben | 72 |
7 | CLARKE Will | 81 |
8 | HAAS Nathan | 71 |
9 | GREIPEL André | 80 |
10 | IMPEY Daryl | 72 |
11 | VON HOFF Steele | 70 |
12 | HANSEN Adam | 72 |
13 | GESCHKE Simon | 64 |
14 | BOUET Maxime | 67 |
15 | SUTHERLAND Rory | 75 |
16 | PORTE Richie | 62 |
17 | BOOKWALTER Brent | 70 |
18 | VAN POPPEL Boy | 78 |
19 | MEYER Travis | 68 |
21 | GRIVKO Andrey | 70 |
22 | FELLINE Fabio | 68 |
23 | MORENO Javier | 63 |
24 | FLAKEMORE Campbell | 72 |
25 | COUSIN Jérôme | 74 |